共查询到20条相似文献,搜索用时 15 毫秒
1.
Exacerbated environmental concerns about petroleum‐based plastics provide the impetus to foster sustainable poly(lactic acid) (PLA) based food packaging. Nonetheless, PLA has its foibilities such as its brittleness, higher gas permeability, and slow crystallization. With the intent to mitigate the above shortcomings, we report a maiden effort for the fabrication of PLA/crystalline silk nano‐discs (CSNs) based bionanocomposites by melt‐extrusion for high temperature engineering and food packaging applications. Acid hydrolyzed silk fibroin from muga silk (Antheraea assama) yields CSNs, a crystalline hydrophobic discotic nanofiller with diameter of ~50 nm and thickness ~3 nm. At optimum loadings of 1 wt % uniform dispersed CSNs with percolated network structures covering the entire matrix can be seen. Due to enhanced crystal nucleation density, water vapor, and oxygen permeability reduced by ~30% and ~70%, respectively. Enhancement in toughness, percentage elongation, and tensile strength up to ~65%, ~40%, and ~10%, respectively, is obtained. Onset of thermal decomposition for the PLA/CSN improved ~10 °C, confirming the role of CSN in enhancing melt stability. Accordingly, this investigation renders a novel non‐invasive approach for increasing the crystallinity with improvement in thermomechanical and barrier properties which make this bionanocomposite, a promising candidate for food packaging applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46671. 相似文献
2.
P. Russo A. Costantini G. Luciani F. Tescione M. Lavorgna F. Branda B. Silvestri 《应用聚合物科学杂志》2018,135(11)
In this work, experimental results about poly(butylene terephthalate) (PBT) based nanocomposites filled with various amounts of silica nanoparticles (NPs) are reported. Two different types of filler are used: silica gel NPs, produced through the Stöber method, and a commercial fumed silica, both coated by a PBT shell. Melt‐mixed samples have been thoroughly investigated by scanning and transmission electron microscopy, infrared Fourier transform spectroscopy (FTIR), thermal gravimetric analysis, differential scanning calorimetry, wide and small angle X‐ray diffraction, and dynamic mechanical analysis. A fine and very good dispersion of NPs into the polymeric matrix is revealed through the morphological analysis when Stöber NPs were used as filler with respect to systems including commercial fumed silica particles. This evidence, combined with matrix–filler interactions revealed by FTIR spectroscopy, justifies the enhancement of both storage modulus and glass transition temperature of the former samples in comparison with reference pristine PBT. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46006. 相似文献
3.
Crystallization kinetics,morphology, and hydrolytic degradation of novel bio‐based poly(lactic acid)/crystalline silk nano‐discs nanobiocomposites 下载免费PDF全文
In this work, novel biodegradable crystalline silk nano‐discs (CSNs) having a disc‐like morphology have been utilized for fabrication of poly(lactic acid) (PLA) nanocomposites by melt‐extrusion. The main focus is to investigate the effect of CSN on isothermal melt crystallization kinetics, spherulitic growth rates, morphology, and hydrolytic degradation of PLA. Spherulitic morphology and growth rates are examined over a wide range of crystallization temperatures (90–120 °C). With incorporation of CSN, the isothermal crystallization kinetics of PLA/CSN increases, however, the crystallization mechanism remains unaltered. The apparent activation energy and surface energy barrier for crystallization process decreases upon addition of CSNs. At lower isothermal crystallization temperatures (Tc) viz. (90–100 °C), reduced growth rates of PLA spherulites is observed. Both PLA and PLA/CSN exhibit highest crystallization rates at around ~107 °C. The hydrolytic degradation rates calculated from molecular weight reduction shows that PLA/CSN nanocomposites' degradation rates are lower as compared to PLA in acidic, neutral, and alkaline media at pH = 2, 7, and 12, respectively, due to hydrophobic nature of CSN. Scanning electron microscopy study demonstrated the surface erosion mechanism of hydrolytic degradation of PLA and PLA/CSN nanocomposites. This work provides valuable insight for the application and reclamation of PLA/CSN bionanocomposites in moist and wet working environments. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46590. 相似文献
4.
Effect of copper sulfate pentahydrate on the structure and properties of poly(vinyl alcohol)/graphene oxide composite films 下载免费PDF全文
Poly(vinyl alcohol) (PVA)/graphene oxide (GO)/copper sulfate pentahydrate (CuSO4·5H2O) composite films were prepared by the solution casting method, and the effect of CuSO4·5H2O on the structure and properties of the PVA/GO composites was investigated. Fourier transform infrared (FTIR) analysis proved the crosslinking interaction between CuSO4·5H2O and the ? OH group of PVA. The crystallinity of the composite films increased first and then decreased. For the composite films, the tensile strength, Young's modulus, and yield stress values improved with increasing CuSO4·5H2O, whereas the elongation at break decreased compared with that of the neat PVA/GO composite film. The thermogravimetric analysis (TGA) and derivative thermogravimetry (DTG) patterns of the PVA/GO/CuSO4·5H2O composite films showed that the thermal stability decreased; this was consistent with the TGA–FTIR analysis. A remarkable improvement in the oxygen‐barrier properties was achieved. The oxygen permeability coefficient was reduced by 60% compared to that of the neat PVA/GO composite film. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44135. 相似文献
5.
Effects of silica on the morphology,structure, and properties of thermoplastic cassava starch/poly(vinyl alcohol) blends 下载免费PDF全文
Thermoplastic cassava starch (TPS)/poly(vinyl alcohol) (PVA)/silica (SiO2) composites were prepared by a melt‐mixing method. The effects of the content and surface properties of SiO2 on the processing, mechanical properties, thermal stability, morphology, and structure of the TPS/PVA/SiO2 composites were investigated. With increasing SiO2 content, the plasticizing times of the TPS/PVA/SiO2 composites were shortened. After the SiO2 surface was treated with a silane coupling agent (KH550), the plasticizing times of the TPS/PVA/SiO2 composites decreased significantly. The tensile strength, elongation at break, and Young's modulus of the TPS/PVA/SiO2 composites increased. The mechanical properties of the TPS/PVA/SiO2 composites containing treated SiO2 were higher than those with untreated SiO2. The thermal decomposition temperatures of the TPS/PVA/SiO2 composites were improved with the addition of SiO2. The presence of inorganic fillers was beneficial to the improvement of the thermal stability of the polymers. The reaction between the treated SiO2 and the starch molecules was beneficial to the formation of more stable structures. The treated SiO2 indicated good interfacial adhesion and uniform dispersion in the matrix. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44020. 相似文献
6.
Dual‐bonding structured ternary composite film of poly(vinyl alcohol)–boric acid–nanodiamond 下载免费PDF全文
Ternary composite films of poly(vinyl alcohol) (PVA), boric acid (BA), and detonation nanodiamond (DND) were prepared by aqueous solution method. Because of its excellent mechanical/thermal properties and low friction coefficient, DND is expected to offer PVA film superior performance if the puzzles of particle agglomeration in polymer matrix and fragile interface reaction between DND and PVA can be settled. BA was used as a crosslinking agent to form a strong network structure between DND and PVA. Investigation on microstructure of PVA/BA/DND films and bonding mechanisms therein shows that BA, DND, and PVA may crosslink by oxo‐bridges owing to the interaction of hydroxyl groups. The Young's modulus (E) of composite films was enhanced by nearly 3.3 times with only 0.8 wt % DND loading, and the antiwear, thermal stability, and waterproof properties can be significantly improved after the crosslinking. Meanwhile, the transparency of composite films can be well preserved even with large DND content. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45449. 相似文献
7.
Layer‐structured poly(vinyl alcohol)/graphene oxide nanocomposites in the form of films are prepared by simple solution processing. The structure and properties of these nanocomposites are studied using X‐ray diffractions, scanning electron microscopy, Fourier‐transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. The results indicate that graphene oxide is dispersed on a molecular scale and aligned in the poly(vinyl alcohol) matrix, and there exists strong interfacial interactions between both components, which are responsible for the significant improvement in the thermal and mechanical properties of the nanocomposites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
8.
Effect of nano‐TiO2 surface modification on polarization characteristics and corona aging performance of polyimide nano‐composites 下载免费PDF全文
Using coupling agent isocyanatopropyltriethoxysilane (ICTOS) to modified nano‐TiO2, the polyimide (PI) with different titanium dioxide (TiO2) contents (0, 1, 2, 3, 4, and 5 wt %) doped nano‐composites were prepared by sol–gel method (PI/TiO2 ICTOS composites). The effect of ICTOS modification on polarization and time‐to‐breakdown properties of composites were investigated by thermally stimulated depolarization current (TSDC) method, dielectric, and Corona aging measurements. The TSDC spectra show that ICTOS modification enhanced α‐peak intensity and make β‐peak disappear in composites. Relevant trap parameters were calculated by an approximate model, and the results indicate that introduction of ICTOS is effective for the charge carrier traps, activation energy distribution in composites. Corona aging measurement show corona resistance was also sufficient improved in PI/TiO2 ICTOS composites. The changes of activation energy and intensity of traps in composites may be responsible for the corona resistance. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45101. 相似文献
9.
In this work, polyvinyl alcohol (PVA) is chemically bonded to carbon nanoparticles (CNPs) by a very simple and versatile solution casting method. Five different kinds of CNPs/PVA composite films were prepared; 0.5, 1.0, 1.5, 2.0, and 3.0 wt% CNPs dispersed in PVA. The as-prepared samples were characterized using various characterization techniques. The resulting nanocomposites proved to possess homogeneity and better mechanical, thermal, optical, and flame-retardant properties than pure PVA. Most of the CNPs with average particle size ≤100 nm were homogeneously dispersed in the PVA matrix showing fluorescence in the violet color zone. The crystallinity of the nanocomposites show a decline in the diffraction intensity as compared to pure PVA which results from the dwelling of CNPs inside the gaps of stacked-layer chains of PVA. The mechanical properties of nanocomposites indicated enhancement in toughness, elastic modulus and tensile strength with an increase in CNPs contents. The assessment for flame-retardant properties was carried out through cone calorimetry. The results show a decrease in both total heat release rate (THRR) and peak heat release rate (pHRR) of the resulting nanocomposites as compared to pure PVA. The superior properties of the CNPs/PVA composites stemmed from the good interfacial bonding between the CNPs and PVA matrix. 相似文献
10.
Sirirat Wacharawichanant Nareerut Wutanasiri Paveena Srifong Usarat Meesangpan Supakanok Thongyai 《应用聚合物科学杂志》2011,121(5):2870-2876
In this study, we examined the effect of vanadium pentoxide (V2O5) on the mechanical, thermal, and morphological properties of poly(vinyl alcohol) (PVA)/V2O5 nanocomposites. The PVA/V2O5 nanocomposites were prepared by solution mixing, followed by film casting. The results show that the Young's moduli of the resulting nanocomposites films were higher than the pure PVA modulus with increasing V2O5 content, and it reached a maximum point at about 0.4 wt % V2O5 content at 8.55 GPa. The tensile strength and stress at break increased with increasing V2O5 content. The addition of V2O5 did not affect the melting temperature. The crystallization temperatures of PVA were significantly changed with increasing V2O5 content. The 5% weight loss degradation temperature of the nanocomposites was measured by thermogravimetric analysis. The degradation temperatures of the V2O5 nanocomposites increased with increasing filler content and were higher than the degradation temperature of pure PVA; this showed a lower thermal stability compared to those of the nanocomposites. The results show that the thermal stability increased with the incorporation of V2O5 nanoparticles. The dielectric constant of PVA had a tendency to improve when the dispersion of particles was effective. The morphology of the surfaces the nanocomposites was examined by scanning electron microscopy. We observed that the dispersion of the V2O5 nanoparticles was relatively good; only few aggregations existed after the addition of the V2O5 nanoparticles at greater than 0.4 wt %. In perspective, the addition of 0.4 wt % V2O5 nanoparticles into PVA maximized the mechanical, thermal, and electrical properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
11.
Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol) 总被引:2,自引:0,他引:2
Poly(vinyl alcohol) was crosslinked with hexamethylene diisocyanate in solution. A broad range of degrees of crosslinking, from 1.7 up to 74 mol% of reacted hydroxyl groups, was achieved. The variation of the thermal and mechanical properties of PVA with the crosslinking density show an initial decrease due to the diminution of the crystallinity of the system, caused by the crosslinking. After an abrupt rise at about 20%, the properties tend to level off independently on the increase of the crosslinking. This behaviour is explained as a result of the competitive action of at least three factors during the crosslinking: (i) weakening of the existing physical network due to hydrogen bonding; (ii) formation of a chemical network; and (iii) introduction of flexible moieties. The last factor is closely connected with the specific chemical structure of the crosslinker itself. 相似文献
12.
Investigations on the production and development of nanoparticle-reinforced polymer materials have been attracted attention by researchers. Various nanoparticles have been used to improve the mechanical, chemical, thermal, and physical properties of polymer matrix composites. Boron compounds come to the fore to improve the mechanical and thermal properties of polymers. In this study, mechanical, thermal, and structural properties of structural adhesive have been examined by adding nano hexagonal boron nitride (h-BN) to epoxy matrix at different percentages (0.5, 1, 2, 3, 4, and 5%). For this purpose, nano h-BN particles were functionalized with 3-aminopropyltriethoxysilane (APTES) to disperse the h-BN nanoparticles homogeneously in epoxy matrix and to form a strong bond at the matrix interface. Two-component structural epoxy adhesive was modified by using functionalized h-BN nanoparticles. The structural and thermal properties of the modified adhesives were investigated by scanning electron microscopy and energy dispersion X-ray spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis techniques. Tensile test and dynamic mechanical analysis were performed to determine the mechanical properties of the adhesives. When the results obtained from analysis were examined, it was seen that the nano h-BN particles functionalized with APTES were homogeneously dispersed in the epoxy matrix and formed a strong bond. In addition that, it was concluded from the experimental results that the thermal and mechanical properties of adhesives were improved by adding functionalized nano h-BN particles into epoxy at different ratios. 相似文献
13.
B. Sreedhar M. Sairam D. K. Chattopadhyay P. A. Syamala Rathnam D. V. Mohan Rao 《应用聚合物科学杂志》2005,96(4):1313-1322
Starch–poly(vinyl alcohol) (PVA) blends with different compositions were prepared and crosslinked with borax by in situ and posttreatment methods. Various amounts of glycerol and poly(ethylene glycol) with a molecular weight of 400 were added to the formulations as plasticizers. The pure starch–PVA blends and the crosslinked blends were subjected to differential scanning calorimetry, thermogravimetry, and X‐ray photoelectron spectroscopic studies. Broido and Coats–Redfern equations were used to calculate the thermal decomposition kinetic parameters. The tensile strengths and elongation percentages of the films were also evaluated. The results suggested that the glass‐transition temperature (Tg) and the melting temperature strongly depended on the plasticizer concentration. The enthalpy relaxation phenomenon was dependent on the starch content in the pure blend. The crosslinked films showed higher stability and lower Tg's than pure PVA and starch–PVA blends, respectively. High‐resolution X‐ray photoelectron spectroscopy provided a method of differentiating the presence of various carbons associated with different environments in the films. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1313–1322, 2005 相似文献
14.
Crosslinked poly(vinyl alcohol) composite films with cellulose nanocrystals: Mechanical and thermal properties 下载免费PDF全文
In this work, poly(vinyl alcohol) (PVA) and cellulose nanocrystals (CNCs) were crosslinked using sodium tetraborate decahydrate (borax) to improve the mechanical and thermal properties of the neat PVA. The results showed that the CNCs affected the crystallization behavior of the crosslinked PVA. The crystallization temperature of the crosslinked PVA with CNCs increased considerably from ~152 to ~187 °C. The continuous improvement of the thermal stability was observed with the increasing content of CNCs in the crosslinked PVA films. Additionally, the strong interaction between the CNCs and PVA was theoretically estimated from the Young's modulus values of the composites. Thermodynamic mechanical testing revealed that the crosslinked PVA composite films with CNCs could bear higher loads at high temperature compared to the films without the CNCs. At 60 °C, 2.7 GPa was reported for the storage modulus of the crosslinked composites with 3 wt % of CNCs, twice as high as that for the crosslinked films without CNCs. Moreover, creep results were improved when CNCs were added in the crosslinked nanocomposites. The materials prepared in this work could broaden the opportunities for applications in a wide range of temperatures. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45710. 相似文献
15.
Cross‐linked poly (vinyl alcohol) membranes were prepared using fumaric acid as the cross‐linking agent and were used for the pervaporation separation of water/isopropanol mixtures. Cross‐linking process was carried out at 150°C at three different times of 10, 30, and 60 min. The membranes were characterized by different known methods of FT‐IR, TGA, XRD as well as tensile test. The effects of cross‐linking time on the thermal and mechanical properties of the membranes and also their pervaporation performance were investigated. Formation of more ester groups by increasing the cross‐linking time was confirmed by the FT‐IR results. TGA analyses showed that thermal stability of the membranes is improved by prolonging the duration of cross‐linking process. This was due to the formation of more compact structure in the membranes. The XRD results revealed that the crystalline regions of the membranes were relatively diminished with an increase in the cross‐linking time. No specific trend was observed for the variation of tensile strength at break with the cross‐linking time. The PVA membrane cross‐linked for 60 min showed high selectivity of 1492 for water permeation for the feed mixture containing 10 wt % water. The temperature dependency of the permeation flux was investigated using Arrhenius relationship, and the activation energy values were calculated for total permeation (Ep), water (Epw), and IPA (EpIPA) fluxes. Lower value of Epw in comparison with EpIPA supported excellent dehydration performance of the cross‐linked membranes. Despite large increase in activation energy of water with prolonged cross‐linking time, the selectivity was improved. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2013 相似文献
16.
Improvement of the thermal transport performance of a poly(vinylidene fluoride) composite film including silver nanowire 下载免费PDF全文
The miniaturization trend of electronic devices requires that components have a high heat dissipation in industrial applications and in daily life. In this context, a highly thermally conductive film was fabricated with silver nanowire (AgNW) and poly(vinylidene fluoride) (PVDF) with a bar‐coating method. The thermal transport performance and mechanism of the AgNW/PVDF composite film were investigated. The through‐plane and in‐plane thermal conductivity of the AgNW/PVDF composite film reached 0.31 and 1.61 W m?1 K?1, respectively; these values far exceeded those of the pristine PVDF film. The experiment illustrated that the thermally conductive pathways formed successfully in the PVDF substrate with the addition of AgNW, and the heat tended to transfer along the thermally conductive pathway rather than along the PVDF substrate. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43554. 相似文献
17.
Surface properties,thermal, and mechanical characteristics of poly(vinyl alcohol)–starch‐bacterial cellulose composite films 下载免费PDF全文
Ioana Chiulan Adriana Nicoleta Frone Denis Mihaela Panaitescu Cristian Andi Nicolae Roxana Trusca 《应用聚合物科学杂志》2018,135(6)
Nanocomposite films for food packaging applications were developed using bacterial cellulose (BC) nanofibers in different amount in a poly(vinyl alcohol)/starch (PVA/St) matrix. In search of a better method to reduce the harmful ingredients in food packaging, the cellulose nanofibers were obtained by the mechanical defibrillation of BC pellicles thus avoiding the addition of chemicals in the final packaging material. Improved mechanical performances were obtained starting from just 1% BC nanofibers in PVA/St. Atomic force microscopy images showed a uniform dispersion of BC nanofibers on the surface of nanocomposites. A twofold increase of both tensile strength and modulus was obtained for 2 wt % BC in the composite. BC nanofibers have greatly improved the barrier properties of PVA/St matrix, a twofold increase of water vapor permeability being obtained for only 2 wt % BC nanofibers in the composite film. PVA/St/2BC was proposed as a high potential material for food packaging applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45800. 相似文献
18.
Preparation and characterization of polybutylene‐succinate/poly(ethylene‐glycol)/cellulose nanocrystals ternary composites 下载免费PDF全文
Leandro N. Ludueña Elena Fortunati Juan I. Morán Vera A. Alvarez Viviana P. Cyras Debora Puglia Liliana B. Manfredi Mariano Pracella 《应用聚合物科学杂志》2016,133(15)
Ternary composites were prepared by twin screw extrusion from polybutylene‐succinate (PBS), poly(ethylene‐glycol) (PEG), and cellulose nanocrystals (CNC). The aim of the work is to improve the physical–mechanical properties of PBS by the addition of CNC. A PEG/CNC masterbatch was prepared in order to achieve a good dispersion of hydrophilic CNC in the hydrophobic PBS. The influence of the nanoparticle content on the polymer properties was studied. Regarding the thermal properties fractioned crystallization phenomena of PEG was observed during cooling from the melt. No significant nucleating effect of the nanocellulose was observed. The material containing 4 wt % of CNC showed the best mechanical performance among the nanocomposites studied due to the combination of high modulus and elongation at break with a low detrimental in strength compared with the PBS/PEG blend. Moreover, no nanocellulose agglomerations were observed in its FESEM micrograph. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43302. 相似文献
19.
Cellulose nanocrystal driven crystallization of poly(d,l‐lactide) and improvement of the thermomechanical properties 下载免费PDF全文
The technological exploitation of polylactide in fields requiring wide range of operating conditions is limited by the low crystallization rate of the polymer and therewith the low thermomechanical stability. Here we report the crystallization and consequent improvement of the thermomechanical properties of originally amorphous poly(d,l ‐lactide) (d : l ratio 11 : 89) loaded with cellulose nanocrystals (CNCs). Isothermal treatment of samples with different CNC contents and at various temperatures, showed up to 6 wt % crystalline phase formation, as confirmed by differential scanning calorimetry and X‐ray diffraction measurements. Under a particular set of annealing conditions, CNCs promote the formation of a lamellar structure. This provides the system with higher order and cohesion which in combination with stress‐transfer between CNCs, led to an increase of the storage modulus in the rubbery plateau up to 30 times (from 2.7 MPa up to 79 MPa), a rise of the melting temperature up to 50°C, and an improvement of the Young's modulus up to 40%. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41607. 相似文献
20.
Graphene quantum dots (GQDs) reinforced poly(vinyl alcohol) (PVA)/polypyrrole (WPPy) nanocomposite films with various GQDs loadings were synthesized using the versatile solvent casting method. The structural and morphological properties of PVA/WPPy/GQDs nanocomposite films were investigated by employing Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The thermogravimetric analysis revealed enhanced thermal stability of synthesized nanocomposites while enhanced dielectric properties were also observed. The maximum dielectric constant value for PVA/WPPy/GQDs nanocomposite films was observed to be ε = 6,311.85 (50 Hz, 150°C). The electromagnetic interference (EMI) shielding effectiveness (SE) of nanocomposite films was determined in the X-band (8–12 GHz) and Ku-band (12–18 GHz) frequency region. The EMI SE was found to be increased from 0.8 dB for the pure PVA film to 9.8 dB for the PVA/WPPy/GQDs nanocomposite film containing 10 wt% GQDs loading. The enhanced EMI shielding efficiency of nanocomposite films has resulted from the homogenous dispersion of GQDs in PVA/WPPy blend nanocomposites. Thus, the prepared nanocomposites are envisioned to utilize as a lightweight, flexible, and low-cost material for EMI shielding applications. 相似文献