首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The 17?-estradiol-imprinted polymers using non-covalent approach with methacrylic acid as the functional monomer was prepared and characterized. The effect of porogenic solvents on the adsorption capacity and thermal stability of the molecularly imprinted polymers (MIPs) were examined. Scanning electron microscopic images showed that the synthesized MIPs were bulk porous materials. The surface areas of MIPs increased from 151?C188 to 239?C292?m2?g-1 when templates were removed by methanol using Soxhlet extraction. In addition, the MIPs prepared in chloroform had a higher adsorption capacity towards 17?-estradiol (1,212???g?g-1) than that in acetonitrile (769???g?g-1), indicating that less polar porogenic solvent is suitable for synthesis of non-covalent MIPs. FTIR showed that the carbonyl group is the major functional group in MIPs to form monomer-template complex via H-bond. In addition, only a slight decrease (< 5?%) in adsorption capacity of the MIPs was observed when incubated at 80?°C for 5?h. Analysis of the capacity factor values (??imp??) for MIPs indicated that the rebinding ability from selective recognition sites of MIPs decreased in the order 17?-estradiol?>?testosterone?>?benzo[a]pyrene?>?progesterone?>?phenol, and the ??imp?? values decreased from 2.68 to 0.63, indicating the excellent selectivity of MIPs among closely related compounds. Results obtained in this study clearly indicate that the imprinted polymer is specific for recognizing 17?-estradiol. The excellent selectivity and high adsorption capacity of 17?-estradiol-imprinted polymers open the door to develop MIPs for effective separation and adsorption of estrogenic compounds.  相似文献   

2.
Molecular imprinted polymer microspheres (MIPs) were prepared by precipitation polymerization using melamine as template molecule, methacrylic acid (MAA) as functional monomer, trimethylol‐propane trimethacrylate (TRIM) as crosslinking agent, acetonitrile as solvent and dispersion medium. Release of the template was performed by continuous extraction with methanol containing 10% acetic acid. The microspheres were observed by scanning electron microscopy (SEM). The perfect microspheres were produced when the addition of crosslinker was 7.48 mmol. The binding capacity of MIPs was examined, Qmax = 68.36 μmol g?1, and the dissociation constant at binding site of MIPs, Kd = 0.761, was estimated. Compared with the performance of conventional imprinted polymer, the imprinted microspheres showed high selectivity in special binding to template molecule. The imprinted microspheres could be used as the stationary phase in HPLC or SPE for selective extraction of melamine in daily products. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
This study focus on the effect of the porogenic solvent on the morphology, recognition, and drug release of carbamazepine‐molecularly imprinted polymer nanospheres prepared by precipitation polymerization. The scanning electron microscopy (SEM) images and Brunauer‐Emmett‐Teller (BET) analysis showed that molecularly imprinted polymer (MIP) prepared by acetonitrile exhibited a regular spherical shape at the nanoscale with a high degree of monodispersity, specific surface area of 242 m2 g−1, and pore volume of 1 mL g−1, while those using chloroform and toluene produced irregular polymer particles with low specific surface area and pore volume. MIP prepared by acetonitrile/chloroform (1 : 1, v/v) showed mediator texture properties compared to MIPs obtained by acetonitrile or chloroform. Results from saturation and displacement assays indicated that the imprinted nanospheres with binding capacity of 2.85 (mg CBZ/g polymer) had high specific affinity to CBZ in contrast to nonimprinted nanospheres (1.63 mg CBZ/g polymer). The imprinted nanospheres with 2.4 selectivity factor had good recognition to CBZ than analog template of oxcarbazepine. Moreover, release studies showed that 20% of loaded CBZ was released from the imprinted nanospheres within the initial 6 h, while another 80% of CBZ was released in the following 9 days. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Two clozapine (CLZ) imprinted polymers were prepared by bulk and precipitation methods. Methacrylic acid and ethylene glycol dimethacrylate (EDMA) were used as functional and crosslinker monomers, respectively. The mean diameter and particle size distribution of the imprinted (P‐MIP) and nonimprinted (P‐NIP) particles obtained in precipitation method were examined. A conventional batch‐adsorption test was applied for characterization of CLZ–polymer interaction. Dissociation constant (KD) and maximum binding sites (Bmax) were calculated using Scatchard analysis. To evaluate the recognition properties of polymers, phenytoin (PTN) binding to each polymer was also studied and compared to CLZ. The imprinting factor (IF) and selectivity factor (α) were also determined for each polymer. Average diameter and polydispersity of P‐MIP were 925 nm and 0.17, respectively. The data for P‐NIP were 1.05 μm and 0.18. The KD, IF, and α values calculated for P‐MIP were 0.45 μM, 3.26, and 17.43, respectively. The data for imprinted polymer, prepared by bulk polymerization (B‐MIP), were 14.5 μM, 1.95, and 3.67. These results demonstrated that precipitation polymerization is a more convenient, more effective, and more reproducible method than bulk polymerization for the synthesis of uniformly sized micron and submicron‐imprinted polymer particles. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Molecularly imprinted polymers are being proposed for the development of novel biorecognition elements for active components. In this study, an imprinted chitosan coated silica nanoparticles (I‐CS@SiO2) polymer was prepared by a simple procedure, in which, naringin (NG) with antioxidant activity, acted as a template, silica as a matrix and CS as a functional polymer. The binding properties were discussed by the equilibrium binding experiment method. Experiments show that the adsorption characteristics of I‐CS@SiO2 are better than that of nonimprinted polymer. It exhibited high selectivity for NG when compared with the nonimprinted polymer, with an imprinting factor α of 1.74. Scatchard analysis of the I‐CS@SiO2 indicated that there was a class of binding sites during the I‐CS@SiO2 recognizing NG: The dissociation constant of KD is 0.016 mmol L?1, the maximum apparent binding capacity of Bmax is 6.56 μmol g?1. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40491.  相似文献   

6.

A tricyclazole selective chitosan/Fe3O4 magnetic molecularly imprinted polymer (MMIP) was synthesized using non-covalent binding polymerization involving methacrylic acid (MAA) as functional monomer, divinylbenzene (DVB-80) as crosslinker, 2,2'-azobisisobutyronitrile as initiator, acetonitrile/toluene (75:25, v/v) as porogenic solvent and tricyclazole as template. Surface morphology and magnetic characterization of the prepared imprinted and non-imprinted polymers were done using scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectrometry and vibrating sample magnetometry, respectively. The adsorption kinetic data fitted best in pseudo-second-order model. The adsorption equilibrium was achieved in 30 min and the maximum binding capacity was 4579.9 µg/g. The Freundlich isotherm model was found suitable for explaining the binding isotherm data (R2 > 0.99). Negative values of thermodynamic parameters ∆G (Gibb’s free energy), ∆H (enthalpy), and ∆S (entropy) revealed exothermic and spontaneous nature of adsorption processes. It also revealed decreased randomness at the solid–liquid interface during sorption. The scatchard plot analysis suggested heterogeneity of binding sites on MMIPs. The molecular recognition selectivity of MMIPs towards tricyclazole was much higher, as compared to its structural analogues, tebuconazole (α = 28.58) and hexaconazole (α = 37.16). The MMIPs were successfully applied to separate and enrich tricyclazole from fortified samples of rice and water, with a recovery percentage of 89.4% and 90.9%, respectively. These reusable imprinted polymers possessing high selectivity and specificity can be utilized as an adsorbent for solid-phase extraction in sample preparation for tricyclazole residue analysis in complex environmental matrices.

  相似文献   

7.
An azobenzene‐containing molecularly imprinting polymer microsphere with photoresponsive binding properties toward 2,4‐dichlorophenoxyacetic acid (2,4‐D) was successful prepared via silica surface polymerization. The number‐average diameters of silica and imprinting polymer microsphere are 0.5 and 0.7 μm, respectively. The static adsorption, binding and selectivity experiments were performed to investigate the adsorption properties and recognition characteristics of the polymers for 2,4‐D. The equilibrium adsorptive experiments indicated that 2,4‐D‐SMIP(surface molecularly imprinted polymers) has significantly higher adsorption capacity for 2,4‐D than its nonimprinted polymers (SNIP).The binding constant Kd and apparent maximum number Qmax of the imprinted polymer were determined by Scatchard analysis as 0.054 mmol L?1 and 0.167 mmol g?1, respectively. The result of photoregulated release and uptake of 2,4‐D experiment demonstrated that azo‐containing SMIP can make use of light and change it into mechanical properties to release and take up the template molecules. It means that the SMIP can be controlled by light. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 869‐876, 2013  相似文献   

8.
Radical-initiated polymerization of N-(2,2 dimethoxyethyl)-N-methylacrylamide has been carried out either in chloroform or methanol using 2,2′-azobisisobutyronitrile as an initiator, allowing us to prepare acetal containing water-soluble polymers. A kinetic study in both solvents showed that this monomer fairly homopolymerized (kp · kt−1/2 = 1 mol−1/2 L1/2 s−1/2). Static light scattering was used to characterize the molecular weight of these polymers. In addition, the Mark–Houwink–Sakurada relationship was established based on viscosity measurements performed at 25°C in water. Recovery of the aldehyde moieties on the polymer was achieved under mild conditions using a diluted inorganic solution. The analysis of the formation of aldehyde groups was performed by 1H- and 13C-NMR. The covalent binding of oligodeoxyribonucleotides was carried out in water/acetonitrile mixtures with subsequent NaBH4 reduction of the imine bonds so as to stabilize the polymer/oligodeoxynucleotide conjugates. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
To achieve suitable properties for specific applications, we synthesized diclofenac sodium (Ds) imprinted polymer beads with controllable size in the range of around 145 nm to 3 µm in diameter by the precipitation polymerization method using methacrylic acid as functional monomer, trimethylolpropane trimethacrylate as crosslinker and azobisisobutyronitrile as initiator. We analyzed the effect of the porogenic solvent on the morphology and recognition of particles. SEM analysis showed some dissimilarity in appearance of the imprinted polymers. The specific surface areas were 246 m2 g–1 and 260 m2 g–1 for imprinted polymers prepared in a mixture of tetrahydrofuran/acetonitrile (MIP1) and tetrahydrofuran/toluene (MIP2) respectively, which were in good agreement with the binding capacities of 150.4 mg g–1 for MIP1 and 280.4 mg g–1 for MIP2, but the imprinted nanoparticles with a specific selectivity factor of 1.5 had a better recognition property to Ds than the analog template meclofenamate sodium monohydrate (Ms) and also faster rebinding kinetics or greater accessibility of Ds. Finally the imprinted microspheres were successfully applied as a solid phase extraction sorbent for the extraction of Ds from human urine with limits of detection and quantification of 0.085 mg L–1 and 0.227 mg L–1, respectively. © 2013 Society of Chemical Industry  相似文献   

10.
Molecularly imprinted polymer nanoparticles were prepared in supercritical carbon dioxide using a noncovalent imprinting approach. In the present work, propranolol was used as a model template, methacrylic acid as a functional monomer, and divinylbenzene as a crosslinker. Under a high dilution condition, the heterogeneous polymerization resulted in discrete crosslinked polymer nanoparticles. Compared with the nonimprinted polymers, the imprinted nanoparticles displayed much higher propranolol uptake in a low polarity organic solvent. The use of a single enantiomer (S)‐propranolol as the template clearly demonstrated that the imprinted binding sites are chiral‐selective, with a cross‐reactivity towards (R)‐propranolol of less than 5%. The overall binding performance of the imprinted nanoparticles was comparable to imprinted polymers prepared in conventional organic solvents. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2863–2867, 2006  相似文献   

11.
Imprinted uniform microgel spheres were prepared by precipitation polymerization. Acetonitrile was used as the dilute solvent with MAA as the monomer, EDMA as the crosslinker and caffeine as the print molecule. Comparison of caffeine adsorption on molecular imprinted and blank microgel spheres was made. Langmuir model was used to fit the adsorption data. It was found that the caffeine imprinted microgel spheres show specific binding sites to the target molecules. A binding study of caffeine on imprinted microgel spheres was made by Scatchard analysis; the dissociation constants (KD) and the maximum binding capacity were KD= 1.84×10−4mol/L,Q max = 16.98 μmol/g for high affinity binding site and KD=1.33×l0−3 mol/L, Qmax=46.84 μmol/g for lower affinity binding site, respectively This microgel spheres can be useful affinity adsorbents in further applications.  相似文献   

12.
A molecularly imprinted polymer (MIP) with dual dopamine/serotonin-like binding sites (DS-MIP) was synthesized for use as a receptor model of study the drug-interaction of biological mixed receptors at a molecular level. The polymer material was produced using methacrylic acid (MAA) and acrylamide (ACM) as functional monomers, N,N′-methylene bisacrylamide (MBAA) as cross-linker, methanol/water mixture (4:1, v/v) as porogen and a mixture of dopamine (D) and serotonin (S) as templates. The prepared DS-MIP exhibited the greatest rebinding of the template(s) in aqueous methanol solution with decreased recognition in acetonitrile, water and methanol solvent. The binding affinity and binding capacity of DS-MIP with S were found to be higher than those of DS-MIP with D. The selectivity profiles of DS-MIP suggest that the D binding site of DS-MIP has sufficient integrity to discriminate between species of non-optimal functional group orientation, whilst the S binding site of DS-MIP is less selective toward species having structural features and functional group orientations different from S. The ligand binding activities of a series of ergot derivatives (ergocryptine, ergocornine, ergocristine, ergonovine, agroclavine, pergolide and terguride) have been studied with the DS-MIP using a competitive ligand binding assay protocol. The binding affinities of DS-MIP were demonstrated in the micro- or submicro-molar range for a series of ergot derivatives, whereas the binding affinities were considerably greater to natural receptors derived from the rat hypothalamus. The DS-MIP afforded the same pattern of differentiation as the natural receptors, i.e. affinity for the clavines > lysergic acid derivatives > ergopeptines. The results suggest that the discrimination for the ergot derivatives by the dopamine and serotonin sites of DS-MIP is due to the structural features and functional orientation of the phenylethylamine and indolylethylamine entities at the binding sites, and the fidelity of the dopamine and serotonin imprinted cavities.  相似文献   

13.
Molecularly imprinting polymer technology is used to prepare a molecularly imprinted polymer (MIP) for the selective recognition of indole‐3‐carbinol (I3C), a chemopreventive and chemotherapeutic phytochemical associated with the anticancer activities of cruciferous vegetables. Prepolymerization study via nuclear magnetic resonance technique is done to choose the best functional monomer that establishes more interaction with the template. The prepared MIP is tested before in batch experiments and subsequently used as solid‐phase extraction sorbent for the selective detection of I3C from standard solutions. In order to verify the selectivity of the MIP, the binding of structurally related compounds, such as indole‐3‐acetonitrile, teophylline, and tryptophan, on the polymer is investigated. The experiments indicate that the MIP is highly selective for I3C with an association constant of Ka = (1.37 ± 0.07) × 103 M?1. Standard mixture solution loaded on MIP‐SPE cartridge give a recovery of 95% for I3C, while the other compounds are totally eluted during washing step. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40819.  相似文献   

14.
Eight molecularly imprinted polymers (MIP1–MIP8) were synthesized with different functional monomers and porogens using 3,4‐dihydroxyphenylacetic acid (DOPAC) as a template. Thermal, radical bulk polymerization was employed in the presence of ethylene glycol dimethacrylate as a cross‐linker. A computational analysis indicated that complexes with four molecules of 4‐vinylpyridine, 1‐vinylimidazole and acrylonitrile had high positive enthalpies of formation. The polymers synthesized with these monomers showed an imprinting factor below 1. Polymer MIP8 synthesized with allylamine as the functional monomer, with the highest energy of interaction with DOPAC, was characterized by the highest imprinting factor equal to 1.91. Examination of the binding ability of DOPAC and a group of structurally related compounds showed that the strong interactions between amine groups in the polymer and carboxylic groups in the analyte governed the recognition mechanism. The Langmuir adsorption model and the pseudo‐second‐order mechanism properly evaluated the MIP8 and non‐imprinted polymer 8 adsorption characteristics. Scatchard analysis revealed that MIP8 had two classes of heterogeneous binding sites with Kd(1) = 0.12 µmol L?1 and Kd(2) = 1.46 µmol L?1. Finally, the potential application of MIP8 for separation of DOPAC was demonstrated. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
Two molecularly imprinted polymers (MIPs) – poly(methacrylic acid‐co‐TRIM) (TRIM, trimethylolpropanetrimethacrylate) and poly(acylamide‐co‐TRIM) – were synthesized in different solvents for the selective recovery of isovaleric acid (template) generated during the anaerobic digestion process. The chemical and structural characterizations of the synthetic adsorbent were carried out by Fourier transform infrared spectroscopy, TGA and porosimetry through N2 adsorption–desorption isotherms. The selective and adsorptive performances of the imprinted polymers were evaluated by kinetic, isothermal, thermodynamic and selectivity studies and by adsorbent reuse experiments. The poly(methacrylic acid‐co‐TRIM) synthesized with dimethyl sulfoxide:chloroform presented higher selectivity and adsorption capacity for isovaleric acid in the presence of six volatile fatty acids. The kinetic results were well adjusted to the pseudo‐nth order and intraparticle diffusion models, leading to k values of 10?4 and 6 × 10?5 for the best synthesis of MIPs and not‐imprinted polymers, respectively. Moreover, the Sips model best described the adsorption isotherm and generated a maximum adsorption capacity of ca 209 mg g?1 (at 25 °C). Cycles of MIP use–desorption–reuse indicated that the selective adsorbent performed better than commercial adsorbents, losing less than 3% of adsorption capacity after three cycles. © 2018 Society of Chemical Industry  相似文献   

16.
A molecularly imprinted polymer (MIP) prepared with Pickering emulsion polymerization was designed by a computational approach for removal of acephate from aqueous solution. Methacrylic acid, ethylene glycol dimethacrylate, and chloroform were screened as the optimal functional monomer, crosslinker, and porogen by the Gaussian 03 package using the density functional theory method. The polymerization was carried out in an oil‐in‐water emulsion using nano‐SiO2 particles as stabilizer instead of a toxic surfactant. The characterization results indicated that the prepared MIP had a porous and hollow core, and the particle size was approximately 20 μm. The binding and recognition abilities of MIP for acephate were studied through equilibrium adsorption analysis and selectivity analysis. The results showed that the MIP had high binding capacity and excellent selectivity for acephate. The saturated binding amount could reach 6.59 × 103 μg/g. The Langmuir isotherm model gave a good fit to the experimental data. Moreover, the results of a reusability analysis and practical application suggested that the prepared MIP provides the potential for removal of acephate residues from aqueous solution. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43126.  相似文献   

17.
A novel sorbent for the separation of 3,3′‐diindolylmethane (DIM) has been developed. DIM was used as a template molecule to prepare twelve imprinted polymers from seven different functional monomers in six various porogens in the presence of ethylene glycol dimethacrylate as a crosslinker. The binding capacity showed that the highest binding specificity was achieved when allylamine as the monomer and carbon tetrachloride as the porogen were used to form bulk polymers. Binding capacities were 130.4 ± 2.8 µg g?1 for imprinted MIP7a polymer versus 49.03 ± 0.44 µg g?1 for non‐imprinted NIP7a polymer. An imprinting factor of 3.12 reflected the high specificity of MIP7a. A solid‐phase extraction protocol was fully optimized. Two methanol–water systems were selected as the most effective for loading and washing steps, while acetonitrile was chosen as the most efficient eluent suitable for recovery of 91.7 ± 3.8% of DIM. Optimal concentration of DIM and volume of loaded sample were also examined. A loaded volume of 2.5 mL was the most appropriate for 0.625 and 1.25 mg L?1. The use of MIP7a for the separations of DIM from spiked bovine serum albumin was evaluated, showing a total recovery of 87.7 ± 3.5%. The commercial sorbent C18 was not suitable for such an application. © 2013 Society of Chemical Industry  相似文献   

18.
Supercritical CO2 (ScCO2) has been used to prepare molecularly imprinted polymers of poly(styrene‐co‐maleic acid) (PSMA) for targeted uracil (URA). The condition of ScCO2 was on 16 MPa between 35 and 50°C. The resultant imprinted membranes prepared at 35 and 50°C bound URA with 9.2 ± 0.10 and 12.6 ± 0.06 μmol g−1, respectively. Competitive binding studies were undertaken in binary substrate solution containing each of URA/DMURA, URA/Thymine, and URA/Cytosine with 2 μM. The URA imprinted membrane showed high separation factor (α) with 17 for both URA/DMURA and URA/Thymine and for URA/Cytosine, α = 13. Results strongly suggested that the URA imprinted membrane had effective selectivity hydrogen bonding to separately bind in the binary components to the template. Effect of organic solvents on the URA imprinting in ScCO2 was also studied, in addition to comparison of properties with those obtained in both ScCO2 and water. Evidence presented that ScCO2 medium was effective to prepare the URA imprinted membrane. We discussed that ScCO2 fluid was efficient to fix the shape of URA template into the PSMA membrane through hydrogen bonding. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
The objective of this work is to study the effects of altering the chain building blocks and the reaction on template binding and transport parameters of imprinted polymer gels. The characterization of imprinted poly(diethylaminoethylmethacrylate‐co‐hydroxyethylmethacrylate‐co‐polyethyleneglycol(n)dimethacrylate) polymer gels prepared via free (FRP) or living (LRP) radical polymerization with varying crosslinking monomer lengths (number of ethylene glycol repeat units of 1, ~4.5, ~9) and concentrations (1, 5, 10, 50%) is presented. All imprinted networks prepared via LRP exhibited significantly higher template binding affinities and capacities as well as significantly lower template diffusion coefficients compared to those prepared via FRP. Synthesizing imprinted polymers via LRP results in much smaller and relatively constant dispersities of polymer chains compared to imprinted polymers prepared via FRP. Therefore, LRP has a profound structural effect on the imprinted polymer network leading to increased homogeneity in the mesh structure which enhances the molecular imprinting effect. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3588–3599, 2013  相似文献   

20.
pH and temperature dual‐sensitive protein imprinted microspheres with high absorption capacity have been successfully synthesized on the surface of SiO2 using chitosan grafted N‐isopropylacrylamide (CS‐g‐NIPAM) as the pH and temperature sensitive monomer, with acrylamide as comonomer, N,N′‐methylenebisacrylamide as the crosslinking agent and bovine serum albumin (BSA) as the template protein. The pH and temperature dual‐sensitivity was also investigated. The results showed that the adsorption capacity and imprinting factor improved slowly with increasing incubation pH from 4.6 to 7.0, and then decreased sharply in alkaline conditions due to the reduction of non‐specific binding from electrostatic and hydrogen bonding interactions. Fourier transform infrared spectroscopy, thermogravimetric analysis and transmission electron microscopy were used to characterize the polymers. The as‐prepared SiO2@BSA molecularly imprinted polymers were also found to have high adsorption capacity (119.88 mg g?1) within 2 h, an excellent imprinting factor (α = 2.25), specific selectivity and good reusability. © 2019 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号