首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
A systematic study of the reinforcement of single‐walled carbon nanotubes (SWNTs), multiwalled carbon nanotubes, and vapor‐grown carbon nanofibers (VGCNFs) in poly(methyl methacrylate) (PMMA) is reported. SWNT/PMMA composite films with various SWNT concentrations (from 0.5 to 50 wt % with respect to the weight of PMMA) were processed from nitromethane. Two types of SWNTs were used: SWNT‐A, which contained 35 wt % metal catalyst, and SWNT‐B, which contained about 2.4 wt % metal catalyst. Properties of different nanotubes containing composites were compared with 15 wt % carbon nanotubes (CNTs). Property enhancement included electrical conductivity, mechanical properties, and solvent resistance. The thermal degradation of PMMA in the presence of CNTs in air and nitrogen environments was studied. No variation in the thermal degradation behavior of PMMA/CNT was observed in nitrogen. The peak degradation temperature increased for the composites in air at low CNT loadings. Dynamic and thermomechanical properties were also studied. At a 35 wt % SWNT loading, a composite film exhibited good mechanical and electrical properties, good chemical resistance, and a very low coefficient of thermal expansion. Property improvements were rationalized in terms of the nanotube surface area. Composite films were also characterized with Raman spectroscopy. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
Poly(methyl methacrylate)/multiwalled carbon nanotubes (PMMA/MWCNT) composites were prepared by two different methods: melt mixing and solution casting. For solution casting, two different solvents, toluene and chloroform, were used to prepare PMMA solutions with different concentrations of MWCNT. The dispersion of the CNT in the composite samples was verified by scanning electron microscopy. For the nanocomposites prepared by both methods, the electrical conductivity increased with increasing filler content, showing typical percolation behavior. In addition, an increase of 11 orders of magnitude in the electrical conductivity relative to the matrix conductivity was determined by broadband dielectric spectroscopy and four probe conductivity measurements. A maximum value of σDC ~ 1.6 S/cm was found for the highest filler loaded sample (3.67 vol %), which was prepared by solution casting from toluene. Nanoindentation analysis was used to characterize the surface mechanical properties of the composite samples prepared by the different methods. Indentation tests were performed at various penetration depths, and it was revealed that the melt mixing process resulted in stiffer neat PMMA samples compared to the solution casted PMMA samples. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41721.  相似文献   

3.
Poly(methyl methacrylate) (PMMA)/single‐walled carbon nanotube (SWNT) composites were synthesized by the grafting of PMMA onto the sidewalls of SWNTs via in situ radical polymerization. The free‐radical initiators were covalently attached to the SWNTs by a well‐known esterification method and confirmed by means of thermogravimetric analysis and Fourier transform infrared spectroscopy. Scanning electron microscopy and transmission electron microscopy were used to image the PMMA–SWNT composites; these images showed the presence of polymer layers on the surfaces of debundled, individual nanotubes. The PMMA–SWNT composites exhibited better solubility in chloroform than the solution‐blended composite materials. On the other hand, compared to the neat PMMA, the PMMA–SWNT nanocomposites displayed a glass‐transition temperature up to 6.0°C higher and a maximum thermal decomposition temperature up to 56.6°C higher. The unique properties of the nanocomposites resulted from the strong interactions between the SWNTs and the PMMA chains. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Mian Wang  Suat Hong Goh 《Carbon》2006,44(4):613-617
We have studied the dynamic mechanical behavior of poly(methyl methacrylate) (PMMA)/acidified multiwalled carbon nanotube (MWNT) composites compatibilized with amine-terminated poly(ethylene oxide) (PEO-NH2). PEO-NH2 is ionically associated with acidified MWNTs via ionic interaction as shown by XPS and FTIR. The miscibility between PEO and PMMA improves the interfacial adhesion between polymer matrix and MWNTs, leading to an increase in the storage modulus values of the composites. The effects of PEO-NH2 on storage modulus and glass transition temperature are discussed.  相似文献   

5.
Poly(ethylene terephthalate)/multiwalled carbon nanotubes (PET/MWCNTs) with different MWCNTs loadings have been prepared by in situ polymerization of ethylene glycol (EG) containing dispersed MWCNTs and terephthalic acid (TPA). From scanning electronic microscopy images of nanocomposites, it can be clearly seen that the PET/MWCNTs composites with low‐MWCNTs contents (0.2 and 0.4 wt %) get better MWCNTs dispersion than analogous with high‐tube loadings (0.6 and 0.8 wt %). The nonisothermal crystallization kinetics was analyzed by differential scanning calorimetry using Mo kinetics equation, and the results showed that the incorporation of MWCNTs accelerates the crystallization process obviously. Mechanical testing shows that, in comparison with neat PET, the Young's modulus and the yield strength of the PET nanocomposites with incorporating 0.4 wt % MWCNTs are effectively improved by about 25% and 15%, respectively. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Poly(Lactic acid) (PLA)‐layered silicate nanocomposite films were prepared by solvent casting method. The films were irradiated with Co60 radiation facility at dose of 30 kGy. The effect of γ irradiation on mechanical properties of the neat PLA and nanocomposites was evaluated by data obtained from tensile testing measurements. The tensile strength of the irradiated PLA films increased with addition of 1 wt % triallyl cyanurate indicating crosslink formation. Significant ductile behavior was observed in the PLA nanocomposites containing 4 pph of nanoclay. Incorporation of nanoclay particles in the PLA matrix stimulated crystal growth as it was studied by differential scanning calorimetry. The morphology of the nanocomposites characterized by transmission electron microscopy and X‐ray diffraction revealed an exfoliated morphology in the PLA nanocomposite films containing 4 pph of nanoclay. Only very small changes were observed in the chemical structure of the irradiated samples as it was investigated by Fourier transform infrared spectroscopy. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
Poly(methyl methacrylate) (PMMA) composites containing raw or purified single‐walled carbon nanotubes (SWCNTs) are prepared by in situ polymerization and solution processing. The SWCNTs are purified by centrifugation in a Pluronic surfactant, which consists of polyethyleneoxide and polypropyleneoxide blocks. Both the effects of SWCNT purity and non‐covalent functionalization with Pluronic are evaluated. Electrical conductivity of PMMA increases by 7 orders of magnitude upon the integration of raw or purified SWCNTs. The best electrical properties are measured for composites made of purified SWCNTs and prepared by in situ polymerization. Strains at fracture of the SWCNT/PMMA composites are nearly identical to those of the neat matrix. A certain decrease in the work to fracture is measured, particularly for composites containing purified SWCNTs (?31.6%). Fractography and Raman maps indicate that SWCNT dispersion in the PMMA matrix improves upon the direct addition of Pluronic, while dispersion becomes more difficult in the case of purified SWCNTs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41547.  相似文献   

8.
This article deals with the study of some mechanical properties of ZnS/poly(methyl methacrylate) nanocomposites prepared by solution casting method. The obtained ZnS/PMMA nanocomposites have ZnS nanoparticles in (0, 2, 4, 6, and 8) wt % and characterized through X‐ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and Fourier transform infrared (FTIR) spectroscopy measurements. Mechanical properties of ZnS/PMMA nanocomposites have been determined at different temperatures (30°C, 50°C, 70°C, and 90°C) through their stress–strain behavior using dynamic mechanical analyzer (DMA). The properties have been found to increase upto 6 wt % of ZnS nanoparticles and then decrease for 8 wt % of ZnS nanoparticles. A theoretical model has also been employed to predict the strain softening and strain hardening of the material. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
A series of poly(methyl methacrylate) (PMMA)/polysiloxane composites and their coatings were prepared as designed. A copolymer (PMMAVTEOS) containing methyl methacrylate (MMA) and vinyltriethoxysilane (VTEOS) was prepared by free radical polymerization and then condensed with methyl triethoxysilane (MTES) to fabricate PMMA/polysiloxane composites; their corresponding coatings were obtained via a curing process in an oven (at 75 °C). The polymers were characterized by gel permeation chromatography and Fourier transform infrared spectroscopy. The surface property, hardness, water contact angle, thermal stability, and optical property of the coatings were investigated by scanning electron microscopy, pencil hardness testing, water contact angle testing, thermogravimetric analysis, and ultraviolet–visible spectroscopy, respectively. The results showed that, after addition of MMA, the pencil hardness of the coatings was reduced from 6H to 2H and the thermal stability decreased from 365 to 314 °C. However, it increased the flexibility and adhesion properties (the water contact angle increased from 94.7° to 102.1°). The transparent PMMA/polysiloxane coatings showed excellent scratch resistance, a smooth surface, high thermal stability, and a strong adhesion property. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46358.  相似文献   

10.
In this work, multi‐walled carbon nanotubes (MWCNT) and poly(methyl methacrylate) (PMMA) pellets were compounded via corotating twin‐screw extruder. The produced MWCNT/PMMA nanocomposite pellets were injection molded. The effect of MWCNT concentration, injection melt temperature and holding pressure on mechanical properties of the nanocomposites were investigated. To examine the mechanical properties of the MWCNT/PMMA nanocomposites, tensile test, charpy impact test, and Rockwell hardness are considered as the outputs. Design of experiments (DoE) is done by full factorial method. The morphology of the nanocomposites was performed using scanning electron microscopy (SEM). The results revealed when MWCNT concentration are increased from 0 to 1.5 wt %, tensile strength and elongation at break were reduced about 30 and 40%, respectively, but a slight increase in hardness was observed. In addition, highest impact strength belongs to the nanocomposite with 1 wt % MWCNT. This study also shows that processing condition significantly influence on mechanical behavior of the injection molded nanocomposite. In maximum holding pressure (100 bar), the nanocomposites show highest tensile strength, elongation, impact strength and hardness. According to findings, melt temperature has a trifle effect on elongation, but it has a remarkable influence on tensile strength. In the case of impact strength, higher melt temperature is favorable. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43738.  相似文献   

11.
In this work, the electrical surface conductivity enhancement of injection‐molded multiwalled carbon nanotube (MWCNT)/poly(methyl methacrylate) (PMMA) nanocomposite by using CO2 laser processing was studied. Variable input factors are considered as MWCNT concentration (in three levels 0.5, 1, and 1.5 wt %), the laser feed angle with the flow direction (in five levels 0°, 30°, 45°, 75°, and 90°), and the cavity machining method that were produced by electrodischarge machining and computer numerical control milling with finishing process. The studies show that the irradiation of laser and utilization of covering gas could enhance the CNT–CNT contacts and the surface electrical conductivity. The morphology of laser‐irradiated surface by using scanning electron microscope certified that the conductive network generated from CNT–CNT contacts can transfer the electrical current. The findings clearly show that the laser feed angle with the flow direction influenced the electrical conductivity. The maximum conductivity (~ 5.310 × 10?4 S) was observed at 75°. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42671.  相似文献   

12.
Poly(methyl methacrylate) (PMMA)/montmorillonite (MMT) nanocomposites were synthesized by a simple technique of a monomer casting method, bulk polymerization. The products were purified by hot acetone extraction and characterized by Fourier transform infrared spectroscopy, X‐ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), examination of their mechanical properties, and light transmittance testing. Although XRD data did not show any apparent order of the MMT layers in the nanocomposites, TEM revealed parallel MMT layers with interlamellar spacings of an average of 9.8 nm and the presence of remnant multiplets of nonexfoliated layers. Therefore, PMMA chains were intercalated in the galleries of MMT. DSC and TGA traces also corroborated the confinement of the polymer in the inorganic layer by exhibiting the increase of glass‐transition temperatures and mass loss temperatures in the thermogram. Both the thermal stability and the mechanical properties of the products appeared to be substantially enhanced, although the light transmittances were not lost. Also, the materials had excellent mechanical properties. Measurement of the tensile properties of the PMMA/MMT nanocomposites indicated that the tensile modulus increased up to 1013 MPa with the addition of 0.6 wt % MMT, which was about 39% higher than that of the corresponding PMMA; the tensile strength and Charpy notched impact strength increased to 88 MPa and 12.9 kJ/m2, respectively. As shown by the aforementioned results, PMMA/MMT nanocomposites may offer new technology and business opportunities. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 348–357, 2005  相似文献   

13.
Thermosetting polyurethane (PU) multi‐walled carbon nanotube (MWCNT) nanocomposites at loadings up to 1 wt % were prepared via an addition polymerization reaction. The morphology of the nanocomposites and degree of dispersion of the MWCNTs was studied using a combination of scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and wide angle X‐ray diffraction (WAXD), and revealed the nanotubes to be highly dispersed in the PU matrix. Addition of just 0.1 wt % MWCNTs resulted in significant enhancements in stiffness, strength and toughness. Increases in Young's modulus, % elongation at break and ultimate tensile strength of 561, 302 and 397% were measured for the nanocomposites compared to the unfilled PU. The effect of the MWCNTs on the modulus of the PU was evaluated using the Rule of Mixtures, Krenchel and Halpin‐Tsai models. Only the Halpin‐Tsai model applied to high aspect ratio nanotubes was in good agreement with the modulus values determined experimentally. Strong interfacial shear stress was found between PU chains and nanotubes, up to 439 MPa, calculated using a modified Kelly‐Tyson model. Evidence for strong interfacial interactions was obtained from the Raman spectra of both the precursor materials and nanocomposites. When the MWCNTs were added to the isophorone diisocyanate an up‐shift of 14 cm?1 and on average 40 cm?1 was obtained for the position of the carbon‐hydrogen (C? H) out‐of plane bending (766 cm?1) and isocyanate symmetric stretch (1420 cm?1) modes respectively. Moreover, an up‐shift of 24 cm?1 was recorded for the nanotube tangential mode (G‐band) for the 1.0 wt % nanocomposite because of the compressive forces of the PU matrix acting on the MWCNTs. The dynamic mechanical (DMA) properties of the PU thermoset and the nanocomposites were measured as a function of temperature. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

14.
In this study, we examined the effect of vanadium pentoxide (V2O5) on the mechanical, thermal, and morphological properties of poly(vinyl alcohol) (PVA)/V2O5 nanocomposites. The PVA/V2O5 nanocomposites were prepared by solution mixing, followed by film casting. The results show that the Young's moduli of the resulting nanocomposites films were higher than the pure PVA modulus with increasing V2O5 content, and it reached a maximum point at about 0.4 wt % V2O5 content at 8.55 GPa. The tensile strength and stress at break increased with increasing V2O5 content. The addition of V2O5 did not affect the melting temperature. The crystallization temperatures of PVA were significantly changed with increasing V2O5 content. The 5% weight loss degradation temperature of the nanocomposites was measured by thermogravimetric analysis. The degradation temperatures of the V2O5 nanocomposites increased with increasing filler content and were higher than the degradation temperature of pure PVA; this showed a lower thermal stability compared to those of the nanocomposites. The results show that the thermal stability increased with the incorporation of V2O5 nanoparticles. The dielectric constant of PVA had a tendency to improve when the dispersion of particles was effective. The morphology of the surfaces the nanocomposites was examined by scanning electron microscopy. We observed that the dispersion of the V2O5 nanoparticles was relatively good; only few aggregations existed after the addition of the V2O5 nanoparticles at greater than 0.4 wt %. In perspective, the addition of 0.4 wt % V2O5 nanoparticles into PVA maximized the mechanical, thermal, and electrical properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Very long and highly dispersible multi-walled carbon nanotube (MWCNT) bundles were synthesized in large quantity by catalytic chemical vapor deposition, and their structural and electrical properties were characterized. It was found that the MWCNTs could be synthesized with either bundled (long-aligned) or short-entangled structure depending on the catalyst system. The aligned MWCNTs were found to be more conductive and more dispersible than the entangled ones. The MWCNT/poly (methyl methacrylate) composites were prepared using both entangled and aligned MWCNTs. The aligned MWCNTs were found to give the composite higher electrical conductivity, which might be attributed to long length and high dispersibility. It was further found that the longer the MWCNT bundle, the higher electrical conductivity of the composite.  相似文献   

16.
Polyphenylene sulfide (PPS)/multiwalled carbon nanotube (MWCNT) composites were prepared using a melt‐blending procedure combining twin‐screw extrusion with centrifugal premixing. A homogeneous dispersion of MWCNTs throughout the matrix was revealed by scanning electron microscopy for the nanocomposites with MWCNT contents ranging from 0.5 to 8.0 wt %. The mechanical properties of PPS were markedly enhanced by the incorporation of MWCNTs. Halpin‐Tsai equations, modified with an efficiency factor, were used to model the elastic properties of the nanocomposites. The calculated modulus showed good agreement with the experimental data. The presence of the MWCNTs exhibited both promotion and retardation effects on the crystallization of PPS. The competition between these two effects results in an unusual change of the degree of crystallinity with increasing MWCNT content. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
Nano‐calcium carbonate (nano‐CaCO3) was used in this article to fill acrylonitrile–butadiene–styrene (ABS)/poly(methyl methacrylate) (PMMA), which is often used in rapid heat cycle molding process (RHCM). To achieve better adhesion between nano‐CaCO3 and ABS/PMMA, nano‐CaCO3 particles were modified by using titanate coupling agent, aluminum–titanium compound coupling agent, and stearic acid. Dry and solution methods were both utilized in the surface modification process. ABS/PMMA/nano‐CaCO3 composites were prepared in a corotating twin screw extruder. Influence of surface modifiers and surface modification methods on mechanical and flow properties of composites was analyzed. The results showed that collaborative use of aluminum–titanium compound coupling agent and stearic acid for nano‐CaCO3 surface modification is optimal in ABS/PMMA/nano‐CaCO3 composites. Coupling agent can increase the melt flow index (MFI) and tensile yield strength of ABS/PMMA/nano‐CaCO3 composites. The Izod impact strength of composites increases with the addition of titanate coupling agent up to 1 wt %, thereafter the Izod impact strength shows a decrease. The interfacial adhesion between nano‐CaCO3 and ABS/PMMA is stronger by using solution method. But the dispersion uniformity of nano‐CaCO3 modified by solution method is worse. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
The influence of organic modifiers on intercalation extent, structure, thermal and mechanical properties of poly(methyl methacrylate) (PMMA)–clay nanocomposites were studied. Two different organic modifiers with varying hydrophobicity (single tallow versus ditallow) were investigated. The nanocomposites were prepared from melt processing method and characterized using wide angle X‐ray diffraction, transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry (DSC), and tensile tests. Mechanical properties such as tensile modulus (E), break stress (σbrk), and % break strain (εbrk) were determined for nanocomposites at various clay loadings. Extent of PMMA intercalation is sufficient and in the range 9–15 Å depending on organoclay and filler loading. Overall thermal stability of nanocomposites increases by 16–30°C. The enhancement in Tg of nanocomposite is merely by 2–4°C. With increase in clay loading, tensile modulus increases linearly while % break strain decreases. Break stress is found to increase till 4 wt % and further decreases at higher clay loadings. The overall improvement in thermal and mechanical properties was higher for the organoclay containing organic modifier with lower hydrophobicity and single tallow amine chemical structure. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

19.
Poly(ethylene oxide) (PEO) based nanocomposites were prepared by the dispersion of multiwall carbon nanotubes (MWCNTs) in aqueous solution. MWCNTs were added up to 4 wt % of the PEO matrix. The dynamic viscoelastic behavior of the PEO/MWCNT nanocomposites was assessed with a strain‐controlled parallel‐plate rheometer. Prominent increases in the shear viscosity and storage modulus of the nanocomposites were found with increasing MWCNT content. Dynamic and isothermal differential scanning calorimetry studies indicated a significant decrease in the crystallization temperature as a result of the incorporation of MWCNTs; these composites can find applications as crystallizable switching components for shape‐memory polymer systems with adjustable switching temperatures. The solid‐state, direct‐current conductivity was also enhanced by the incorporation of MWCNTs. The dispersion level of the MWCNTs was investigated with scanning electron microscopy. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
This work concerns the fatigue behavior at three different temperature conditions (−40, 20, and 80°C) and the addition of multiwalled carbon nanotube (MWCNT) into a carbon-fiber reinforced poly(ether-imide) composite. The incorporation of MWCNT into the composite increased the tensile strength and Young's modulus by up 5 and 2%, respectively. At low temperature, the incorporation of the nanoparticles improved the fatigue strength of the laminates by 15%. The shear strength results obtained by interlaminar shear strength and compression shear test tests have shown an increase of about 16 and 58%, respectively, by the introduction of nanotubes into the laminates. Fractographic observations revealed that the surface of carbon nanotube laminate (PEI/MWCNT/CF) presented a ductile behavior, and differences in the fracture aspects of the material compared to the traditional PEI/CF laminate have been observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号