共查询到20条相似文献,搜索用时 0 毫秒
1.
Thermal and gas permeation properties of copolymers derived from 3‐methacryloxypropyltris(trimethylsiloxy)silane and adamantyl group‐containing methacrylate derivatives 下载免费PDF全文
Novel copolymer membranes derived from three types of adamantyl group‐containing methacrylate derivatives and 3‐methacryloxypropyltris(trimethylsiloxy)silane (SiMA) were synthesized via free radical polymerization. The thermal and permeation properties of these copolymer membranes were investigated. Copolymer membranes with less than 11.9 mol % adamantane content exhibited good membrane forming abilities that are suitable for permeation measurement. The decomposition temperature of all copolymers increased up to approximately 40–80°C with increasing adamantane content compared with poly(SiMA). Moreover, the glass transition temperature (Tg) of all copolymers increased up to approximately 46–60°C with increasing adamantane content compared with the theoretical value, which was estimated from Fox equation. 1‐Adamantyl methacrylate copolymer had the highest fractional free volume among the three types of adamantly group‐containing methacrylate derivatives. The gas permeability coefficient of this copolymer increased by 22–45% with increasing adamantane content compared with that of poly(SiMA). © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43129. 相似文献
2.
Preparation of bi‐continuous poly(acrylonitrile‐co‐methyl acrylate) microporous membranes by a thermally induced phase separation method 下载免费PDF全文
Linli Tan Na Han Longfei Zhang Yongqiang Qian Xingxiang Zhang Zhenyu Cui Jun Cai 《应用聚合物科学杂志》2018,135(17)
Poly(acrylonitrile‐co‐methyl acrylate) [P(AN‐MA)] flat microfiltration membranes were successfully prepared via the thermally induced phase separation (TIPS) method, by using low polar caprolactam (CPL) and methoxypolyethylene glycol 550 (MPEG 550) as the mixed diluent. In this work, P(AN‐MA) membranes exhibit bi‐continuous networks, porous surfaces, high porosity, and big pore size, when membrane fabricated from a high MPEG 550 content, low P(AN‐MA) concentration, and small cooling rate, it can be dry state preservation and do not need to be impregnated by any solvent. When the ternary system was composed of 15 wt % P(AN‐MA), 12.5 wt % CPL, and 87.5 wt % MPEG 550, formed at 25 °C air bath, membrane has the highest water flux of 4420 L m?2 h?1. The obtained P(AN‐AN) membrane displays a high carbonic black ink rejection ranging from 83.7 to 98.5 wt %. Moreover, P(AN‐MA) polymer not only retains the advantages of PAN but also reduces the polar component from 16.2 to 10.77 MPa0.5. It can be used membrane matrix to obtain pore structure and excellent mechanical property membrane via TIPS. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46173. 相似文献
3.
A novel approach for synthesis of poly(norbornene)‐co‐poly(styrene) block copolymers via metathesis polymerization and free‐radical polymerization 下载免费PDF全文
It is successfully realized that block copolymers are synthesized via metathesis polymerization followed by free‐radical polymerization. This method is performed using styrene (St) and norbornene, one block is synthesized using the Grubbs second generation catalyst in the presence of chain transfer agents, and the subsequent polymerization of St is initiated by azo compounds to complete the additional blocks in the copolymers. The use of free‐radical polymerization instead of controlled radical polymerization or ionic polymerization can be potentially superior for industrialization. As a result, the molecular weights of the block copolymers ranging from 10.4 to 54.3 kDa and polydispersity indices ranging from 1.30 to 1.91 are obtained. In principle, this new method can be potentially useful to prepare a broad range of block copolymers with cyclic olefin groups in the main chains, which may be used in some particular applications. 相似文献
4.
A novel block copolymer, poly(ε‐caprolactone)‐b‐poly(4‐vinyl pyridine), was synthesized with a bifunctional initiator strategy. Poly(ε‐caprolactone) prepolymer with a 2,2,6,6‐tetramethylpiperidinyloxy (TEMPO) end group (PCLT) was first obtained by coordination polymerization, which showed a controlled mechanism in the process. By means of ultraviolet spectroscopy and electron spin resonance spectroscopy, the TEMPO moiety was determined to be intact in the polymerization. The copolymers were then obtained by the controlled radical polymerization of 4‐vinyl pyridine in the presence of PCLT. The desired block copolymers were characterized by gel permeation chromatography, Fourier transform infrared spectroscopy, and NMR spectroscopy in detail. Also, the effects of the molecular weight and concentration of PCLT on the copolymerization were investigated. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2280–2285, 2004 相似文献
5.
Synthesis of a poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino) ethyl methacrylate] block copolymer and its effects on the surface charges and pH‐responsive properties of poly(vinylidene fluoride) blend membranes 下载免费PDF全文
A poly(methyl methacrylate) (PMMA)‐b‐poly[2‐(N,N‐dimethylamino) ethyl methacrylate] (PDMAEMA) block copolymer was successfully synthesized by a reversible addition–fragmentation chain‐transfer method. The resulting copolymer was used to prepare poly(vinylidene fluoride) blend membranes via a phase‐inversion technique. The polymorphism, structure, and properties of the blend membranes were investigated by Fourier transform infrared spectrometry, scanning electron microscopy (SEM), ζ potential analysis, and filtration. The results indicate that PMMA‐b‐PDMAEMA could migrate onto the surface of the membrane during the coagulation process, and more of the β‐crystal phase appeared with the increase of the block copolymer in the membranes. The surface morphology and cross section of the membranes were also affected by the copolymer, as shown by SEM. The ζ‐potential results show that the surface charges of the membrane could be changed from positive to negative at an isoelectric point as the pH increased. The blend membrane also exhibited good pH sensitivity, and its water flux showed a great dependence on pH. The filtration experiment also indicated that the blend membrane had good hydrophilicity and antifouling properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40685. 相似文献
6.
Synthesis and properties of sulfonated poly(phosphazene)‐graft‐poly(styrene‐co‐N‐benzylmaleimide) copolymers via atom transfer radical polymerization for proton exchange membrane 下载免费PDF全文
A series of sulfonated poly(phosphazene)‐graft‐poly(styrene‐co‐N‐benzylmaleimide) (PP‐g‐PSN) copolymers were prepared via atom transfer radical polymerization (ATRP), followed by regioselective sulfonation which occurred preferentially at the poly(styrene‐co‐N‐benzylmaleimide) sites. The structures of these copolymers were confirmed by Fourier transform infrared (FTIR) spectroscopy, 1H‐NMR, and 31P‐NMR, respectively. The resulting sulfonated PP‐g‐PSN membranes showed high water uptakes (WUs), low water swelling ratios (SWs), low methanol permeability coefficients, and proper proton conductivities. In comparison with non‐grafting sulfonated poly(bis(phenoxy)phosphazene) (SPBPP) membrane previously reported, the present membranes displayed higher proton conductivity, significantly improved the thermal and oxidative stabilities. Transmission electron microscopy (TEM) observation showed clear phase‐separated structures resulting from the difference in polarity between the hydrophobic polyphosphazene backbone and hydrophilic sulfonated poly(styrene‐co‐N‐benzylmaleimide) side chains, indicating effective ionic pathway in these membranes. The results showed that these materials were promising candidate materials for proton exchange membrane (PEM) in direct methanol fuel cell (DMFC) applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42251. 相似文献
7.
Different dispersion polymerization strategies influence the quality of fluorescent poly (St‐co‐GMA) microspheres 下载免费PDF全文
The polymerization strategy plays a vital role in the preparation of functional microspheres. In this work, fluorescent poly (styrene‐co‐glycidyl methacrylate) (PSt‐GMA) microspheres were synthesized via one‐stage and two‐stage dispersion polymerization with 4‐Bis(5‐phenyl‐1,3‐oxazol‐2‐yl)benzene (POPOP) as fluorescence agent. SEM and DLS were adopted to characterize the properties of prepared microspheres. The UV‐vis and fluorescence spectroscopy were used to analyze the mechanisms of two‐stage dispersion polymerization. The experimental results showed that the size distribution and fluorescence intensity of prepared microspheres could be improved by two‐stage dispersion polymerization compared to one‐stage dispersion polymerization. In addition, according to UV‐vis, the interactions between POPOP and Poly (N‐vinyl pyrrolidone) (PVP) as well as POPOP and Glycidyl methacrylate (GMA) could affect the particle size and its distribution. UV‐vis and fluorescence spectra implied that the POPOP existed outside of the particle's core via two‐stage strategy. The monomer conversion of styrene was similar at the beginning of reaction; however, the monomer conversion of styrene by two‐stage strategy was higher than that of by one‐stage strategy. In a word, two‐stage dispersion polymerization could prepare fluorescent microspheres with the monodispersion micrometer‐size and high quality. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41927. 相似文献
8.
Synthesis and characterization of lignin–poly(acrylamide)–poly(2‐methacryloyloxyethyl) trimethyl ammonium chloride copolymer 下载免费PDF全文
In this work, two monomers, acrylamide (AM) and [2‐(methacryloyloxy)ethyl]trimethylammonium chloride (DMC) were copolymerized from kraft lignin (KL) in an aqueous suspension initiated by free radical copolymerization in the presence of potassium persulfate. The impact of copolymerization conditions on the charge density and molecular weight of the copolymers was investigated. The molecular weight and mass balance analyses confirmed that the homopolymer [polyDMC (PDMC) and polyAM (PAM)] and undesired copolymer (AM–DMC) productions dominated as time, initiator, and DMC dosage increased more than the optimum values. The activation energy of the polymerization of KL and AM (43.02 kJ mol?1), KL and DMC (21.99 kJ mol?1), AM (14.54 kJ mol?1), DMC (10.34 kJ mol?1), and AM and DMC (18.13 kJ mol?1) was determined. Proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis, and elemental analysis confirmed the production of KL–AM–DMC copolymer. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46338. 相似文献
9.
Determination of reactivity ratios for the copolymerization of poly(acrylic acid‐co‐itaconic acid) 下载免费PDF全文
Monomer reactivity ratios are important parameters used in copolymerization kinetics to predict the rate of polymerization, copolymer composition and monomer sequence length, and by extension, molecular weight and distribution of the final product. Batch aqueous solution copolymerizations of acrylic acid (AA) and itaconic acid (IA) are performed at various feed compositions. Polymerizations are categorized into low (<11 wt %) conversion and higher (< 30 wt %) conversion data sets for analysis. Due to the limited solubility of IA in the reaction mixture, the feed composition of IA in all polymerizations is constrained to lower than 25 mol %. Conversion is determined by gravimetric methods, and copolymer composition via 1H‐NMR spectroscopy. All data are analyzed using the error‐in‐variables model (EVM) method. Two analyses are used, one with the EVM approach and another with a novel Direct Numerical Integration (DNI) coupled with the EVM method. The DNI/EVM approach yields values of rAA = 0.36 and rIA = 1.62 for the reactivity ratios. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44014. 相似文献
10.
Guadalupe del C. Pizarro Oscar G. Marambio Manuel Jeria‐Orell Mario E. Flores Bernabé L. Rivas 《应用聚合物科学杂志》2010,118(6):3649-3657
In recent years, much attention has been given to the development of specialty polymers from useful materials. In this context, amphiphilic block copolymers were prepared by atom transfer radical polymerization (ATRP) of N‐phenylmaleimide (N‐PhMI) or styrene using a poly(2‐hydroxyethylmethacrylate)‐Cl macroinitiator/CuBr/bipyridine initiating system. The macroinitiator P(HEMA)‐Cl was directly prepared in toluene by reverse ATRP using BPO/FeCl3 6 H2O/PPh3 as initiating system. The microstructure of the block copolymers were characterized using FTIR, 1H‐NMR, 13C‐NMR spectroscopic techniques and scanning electron microscopy (SEM). The thermal behavior was studied by differential scanning calorimetry (DSC), and thermogravimetry (TG). The theoretical number average molecular weight (Mn,th) was calculated from the feed capacity. The microphotographs of the film's surfaces show that the film's top surfaces were generally smooth. The TDT of the block copolymer P(HEMA)80‐b‐P(N‐PhMI)20 and P(HEMA)90‐b‐P(St)10 of about 290°C was also lower than that found for the macroi′nitiator poly(HEMA)‐Cl. The block copolymers exhibited only one Tg before thermal decomposition, which could be attributed to the low molar content of the N‐PhMI or St blocks respectively. This result also indicates that the phase behavior of the copolymers is predominately determined by the HEMA block. The curves reveal that the polymers show phase transition behavior of amorphous polymers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
11.
In this study, itaconic acid (IA) was grafted onto poly(vinyl alcohol) (PVA) with cerium(IV) ammonium nitrate as an initiator at 45°C. The grafted PVA was characterized with Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and differential scanning calorimetry. IA‐grafted PVA membranes were prepared with a casting method, and the permeation and separation characteristics of acetic acid/water mixtures were investigated with pervaporation (PV), evapomeation (EV) and temperature‐difference evapomeation (TDEV) methods. The effects of the feed composition, operating temperature, and temperature of the membrane surroundings on the permeation rate and separation factor for the acetic acid/water mixtures were studied. The permeation rates in EV were lower than those in PV, whereas the separation factors were higher. With the TDEV method, the permeation rates decreased and the separation factors increased as the temperature of the membrane surroundings decreased. The prepared membranes were also tested in PV, EV, and TDEV to separate the various compositions of the acetic acid/water mixtures (20–90 wt % acetic acid) at 40°C. The highest separation factor, 686, was obtained in TDEV with a 90 wt % acetic acid concentration in the feed. The activation energies of permeation in PV and EV were calculated to be 8.5 and 10.2 kcal/mol, respectively, for a 20 wt % acetic acid solution. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2322–2333, 2004 相似文献
12.
Structure and properties of poly(acrylonitrile‐co‐methyl acrylate) membranes prepared via thermally induced phase separation 下载免费PDF全文
Poly(acrylonitrile‐co‐methyl acrylate) [(P(AN‐MA)] microporous membranes were prepared via a thermally induced phase separation (TIPS) process by using γ‐butyrolactone (γ‐BA) and glyceryl triacetate (GTA) as the mixed diluent. The purpose of this work is to investigate the effects of the γ‐BA content, P(AN‐MA) concentration, and cooling rate on the structure and properties of P(AN‐MA) membranes. A lacy structure with high connectivity was formed with 50 wt % γ‐BA, and 50 wt % GTA comprising the mixed diluent. With an increase in the γ‐BA content, the pore structure acquires semi‐closed or completely closed cell‐like morphologies. The different phase separation mechanisms greatly influence the mechanical properties of the P(AN‐MA) membranes. P(AN‐MA) membranes with a lacy structure possess better tensile strength than those with semi‐closed or completely closed cell‐like structures. The membrane pore size grows larger when the TIPS process utilizes a higher γ‐BA content and a lower cooling rate. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43444. 相似文献
13.
A series of novel solvent‐soluble polyimides based on the diamine of 3,3‐bis[4‐(4‐aminophenoxy)phenyl] phthalide (BAPP) were prepared. The effects of the dianhydride structures on the pervaporation performance of aqueous alcohol mixtures through these polyimide membranes were studied. The BAPP‐based polyimide membranes exhibited water permselectivity during all process runs. The permeation rate increased with the addition of bulky groups to the polyimide backbone. The effects of the feed solution concentration, feed solution temperature, and carbon atom number of the feed alcohol on the pervaporation performance were also investigated systematically. Optimum pervaporation results, a separation factor of 22 and a permeation rate of 270 g/m2 h, were obtained for a 90 wt % feed aqueous ethanol solution through a 3,3′,4,4′‐biphenyl tetracarboxylic dianhydride polyimide membrane at 25°C. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2046–2052, 2005 相似文献
14.
Hydroxyethylcellulose‐graft‐poly (N, N‐dimethylacrylamide) was synthesized by successive atom transfer radical polymerization (ATRP) of N,N‐dimethylacrylamide (DMA) monomer using HEC‐Br as initiator, CuBr and 5,5,7,12,12,14‐hexamethyl‐1,4,8,11‐tetraazamacrocyclotetradecane (Me6[14]aneN4) as catalyst and ligand, with molar ratio DMA: HEC‐Br (C? Br): CuBr: Me6[14]aneN4 = 100 : 1 : 1 : 3. HEC–Br macroinitiator was synthesized by esterification of HEC with 2‐bromoisobutyryl bromide. GPC and 1H NMR studies show that the molecular weight of the resulting PDMA increased linearly with the conversion. Within 6 h, the polymerization can reach almost 60% of conversion. The copolymer is applied for the separation of basic proteins in capillary electrophoresis. The results show that this medium has a powerful capability in resisting basic proteins adsorption because the polymer forms noncovalent coating in silica capillaries. With a broad range of pH 2–7, proteins were separated with sufficient efficiencies above 200,000 plates/m. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
15.
Phototransparency and water vapor sorption properties of ABA‐type triblock copolymers derived from 6FDA‐TeMPD and poly(2‐methyl‐2‐adamantylmethacrylate) 下载免费PDF全文
The phototransparency and water vapor sorption properties of ABA‐type triblock copolymer membranes derived from 4,4‐(hexafluoroisopropylidene) diphthalic anhydride‐2,3,5,6‐tetramethyl‐1,4‐phenylenediamine (PI) and poly(2‐methyl‐2‐adamantylmethacrylate) (PMAdMA) were investigated, with focus on the effect of the adamantane component. The phototransparency of PMAdMA‐block‐PI‐block‐PMAdMA [Block(PI/PMAdMA)] was about 10–20% higher than that of poly(methyl methacrylate)‐block‐PI‐block‐Poly(methylmethacrylate) [Block(PI/PMMA)] because the high symmetric structure of adamantane inhibited photoabsorbance. The water vapor solubility of Block(PI/PMAdMA) decreased with increased PMAdMA because the PMAdMA had a hydrophobic property. Interestingly, in all relative‐pressure regions, Block(PI/PMAdMA) with the least PMAdMA content showed a higher solubility coefficient than PI because the high mobility of PMAdMA in Block(PI/PMAdMA) resulted in additional sorption sites in the PI segment. A comparison of Block(PI/PMAdMA) with Block(PI/PMMA) in terms of relative pressure at the beginning of clustering further revealed that cluster formation in Block(PI/PMAdMA) was inhibited compared with Block(PI/PMMA) because bulky structure of adamantane restricted the mobility of the polymer main chain. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43795. 相似文献
16.
Effects of thermal treatment on the CO2 sorption of triblockcopolymers derived from polyimide and poly(methylmethacrylate) 下载免费PDF全文
ABA‐type triblock copolymers were synthesized using 4,4‐(hexafluoroisopropylidene) diphthalic anhydride‐2,3,5,6‐tetramethyl‐1,4‐phenylenediamine (6FDA‐TeMPD) and poly(methyl methacrylate) (PMMA). The films were characterized by determining the effects of different content ratios and thermal decomposition of PMMA block on CO2 sorption properties. TGA results showed that a thermal labile block can be completely decomposed under a previously reported thermal condition. SEM results presented that the asperity was micro‐phase separation caused by the PMMA block content rate. Numerous pores with sizes of approximately 10 to 50 nm were detected on Block(28/72) and Block(10/90). The isotherms of all films fitted the dual‐mode sorption model, and CO2 sorption decreased with increased PMMA content rate. Infinite‐dilution CO2 solubility depended on the Langmuir's site of each polymer because SH0/S0 of PI and Block(PI/PMMA) varied from 0.84 to 0.92 CO2 affinity was increased by thermal treatment as indicated by the higher b and S0 values of thermally treated films than those of nontreated films. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42208. 相似文献
17.
The separation of acetic acid–water mixtures was carried out using pervaporation (PV) and temperature difference evapomeation (TDEV) methods. For the separation process, 4‐vinyl pyridine was grafted on poly(vinyl alcohol). Membranes were prepared from the graft‐copolymer by casting method and crosslinked by heat treatment. The effects of feed composition on the separation characteristics were studied and the performances of the separation methods were compared. Permeation rates were found to be high in PV whereas separation factors were high in TDEV method. Membranes gave permeation rates of 0.1–3.0 kg/m2h and separation factors of 2.0–61.0 depending on the composition of the feed mixture and the method. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1385–1394, 2006 相似文献
18.
Suna Yuksel Bernabé L. Rivas Julio Sánchez Héctor D. Mansilla Jorge Yañez Pia Kochifas Nalan Kabay Marek Bryjak 《应用聚合物科学杂志》2014,131(19)
In this study, the photocatalytic oxidation of hazardous arsenite (As(III)) to arsenate (As(V)) and the sequential removal of arsenate from aqueous solution by liquid‐phase polymer‐based retention (LPR) were investigated. The photocatalytic oxidation of arsenite was performed using TiO2 (P25 Degussa, Germany) under UV‐A light. The optimal photocatalytic conditions to oxidize 10 mg L?1 of arsenite solution were achieved using a 0.5 g L?1 of catalyst at a pH value of 2. The As(III) oxidation reached 100% after 30 min of illumination with UV‐A light. A water‐soluble polymer containing quaternary ammonium groups, poly(3‐acrylamidopropyl)trimethylammonium chloride (P(ClAPTA)), was used as an extracting reagent in the LPR process. To obtain the optimized conditions, the removal experiments were performed at various polymer : As(V) molar ratios using 10 mg L?1 of arsenate solutions. After the oxidation of As(III) to As(V), the removal of arsenate by P(ClAPTA) was obtained in a 99% yield using a 20 : 1 polymer : As(V) molar ratio at a pH value of 9. The results demonstrate that the combination of these methods is highly useful for potential applications related to the treatment of wastewater contaminated with As(III). © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40871. 相似文献
19.
The separation of acetic acid–water mixtures was carried by using pervaporation (PV) and temperature difference evapomeation (TDEV) methods. For the separation process 4‐vinyl pyridine was grafted on poly(vinyl alcohol). Membranes were prepared from the graft‐copolymer by casting method and crosslinked by heat treatment. The effect of feed composition on the separation characteristics was studied and the performances of the separation methods were compared. Permeation rates obtained in PV were found to be high, whereas separation factors were high in TDEV method. Membranes gave permeation rates of 0.1–3.0 kg/(m2 h) and separation factors of 2.0–61.0, depending on the composition of the feed mixture and the method. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2030–2039, 2006 相似文献
20.
In this article, three novel polymers based on poly(2,5‐benzimidazole) (ABPBI) were synthesized by introducing propyl, isobutyl or n‐butyl groups to its side chain through an alkyl substitution reaction. FTIR and 13C NMR were applied to confirm the formation of corresponding chemical groups. Their physical properties including crystallinity, thermal stability, mechanical strength, and micro‐morphology were also characterized. Their solubility in common solvents were also tested to see if the modification will bring any improvement. Gas permeation properties of three derivative membranes prepared by a casting and solvent‐evaporation method were tested with pure gases including H2, N2, O2, CH4, and CO2. It has been revealed that gas with a smaller molecular size owned a larger permeability. This means gas permeation in all prepared membranes should be diffusivity selective. Among all three modified ABPBI membranes, isobutyl substitution modified ABPBI (IBABPBI) showed the best selectivity of H2 over other gases such as N2 (~185) and CO2 (~6.3) with a comparable permeability (~9.33 barrer) when tested at 35°C and 3.0 atm. Testing temperature increase facilitated gas permeation for all three membranes obviously; while in term of gas selectivity temperature increase showed diverse alteration because it brought variable impact on gas solubility of different gases. Even so, IBABPBI membrane still owned acceptable selectivity of H2 over N2 (~118) and CO2 (~6.3) with an almost doubled permeability (~17.5 barrer) when tested at 75°C and 3.0 atm. Additional tests showed that running at high pressure did not bring any obvious deterioration to gas separation performance of IBABPBI membrane. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40440. 相似文献