首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of a facile and efficient approach to prepare high-toughness epoxy resin is vital but has remained an enormous challenge. Herein, we have developed a high-performance environment-friendly solid epoxy resin modified with epoxidized hydroxyl-terminated polybutadiene (EHTPB) via one-step melt blending. The characterization, mechanical performance, curing behavior, and thermal properties of EHTPB-modified epoxy resin were investigated. EHTPB-modified epoxy resin exhibited excellent toughness with a 100% increase in elongation at break of tensile than that of neat epoxy resin. The transfer stress and dissipated energy in the rubber phase were predominant mechanisms of toughening. The toughening effect of EHTPB on solid epoxy resin was better than that of some of the previously reported liquid epoxy resins. Meanwhile, at 10 wt % of EHTPB loading, the EHTPB-modified epoxy resin displayed high strength and 22 and 101% improvement of flexural strength and impact strength, respectively. Moreover, at 10 wt % of EHTPB loading, the activation energy of EHTPB-modified epoxy resin for curing reaction decreased from 73.89 to 65.12 kJ·mol−1, which is beneficial for the curing reaction. Furthermore, EHTPB-modified epoxy resin had a good thermal stability and the initial degradation temperature increased from 249 to 313 °C at 10 wt % of EHTPB loading. This work provides a simple-preparation and highly efficient and large-scale approach for the production of high-toughness environment-friendly solid epoxy resins. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48596.  相似文献   

2.
Toughening of epoxy resin by block copolymers containing an epoxy‐philic block and an epoxy‐phobic block is usually costly because of their complex preparation procedure. In this work, a novel, random epoxy‐amphiphilic copolymer (PHGEL), which combines an “epoxy‐philic” component and an “epoxy‐phobic” component, has been synthesized and evaluated as a potential toughening agent for a diglycidyl ether of bisphenol A–based epoxy thermoset (EP). The curing behavior of the EP/PHGEL system has been investigated, and the results show that the hydroxyl group on the PHGEL chain can slightly activate the curing reaction. The mechanical testing shows that the toughness of the epoxy resin is improved by 294% when 4 wt % of PHGEL is added. Simultaneously, the tensile strength, elongation at break, and glass‐transition temperature are also improved. In addition, the thermogravimetric analysis shows that PHGEL has no obvious effect on the thermal stability of the epoxy thermosets. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44863.  相似文献   

3.
Phenolphthalein poly(ether ketone) (PEK‐C) was blended with the diglycidyl ether of bisphenol A epoxy resin and bisphenol A dicyanate ester. The effect of cyanate content on cure behaviors, thermal and mechanical properties of PEK‐C/epoxy/cyanate mixtures was investigated. As results, the increase of cyanate content slightly hindered the cure reaction of the mixtures. Fourier transform infrared results indicated that the curing reaction of the cured mixtures was complete. When the cyanate ester content increased, the flexural properties and Tg values were enhanced, and the initial thermal decomposition temperature was reduced. A significant improvement in fracture toughness was obtained when the cyanate group in the mixtures was excessive. The fracture toughness can be well explained by SEM observations. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Different synthesis routes were studied to obtain 4,4′-biphtalic dianhydride/3,3′-dihydroxybenzidine polyimide precursors (polyamic acids [PAAs]) with different inherent viscosities (IVs) and imidization degrees. The synthesized PAAs were introduced as a thermoplastic modifier into an epoxy (EP) resin. Different loadings of PAA were used to investigate the curing behavior, heat resistance, and mechanical properties. The onset curing temperature of the EP by adding 20 wt% PAA diminished by around 15°C. Thermogravimetric analysis revealed that the initial and 10 wt% weight loss temperature for EP with 5 wt% PAA improved by 13°C and 7.7%, respectively. Further, the results of tensile and plane-strain fracture toughness tests indicated that as the amount of PAA increased, the strength and toughness of EP decreased. These improvements were due to the high heat resistance and mechanical properties of PI precursor introduced into the EP, which formed a three-dimensional structure together. The interlaminar shear strength (ILSS) of the system experienced a reduction; however, after adding 2 phr nanosilica to the system containing PAA with average IV and imidization degree, ILSS showed 4.4% increment.  相似文献   

5.
A series of intercrosslinked networks formed by diglycidyl ether of bisphenol A epoxy resin (DGEBA) and novel bismaleimide containing phthalide cardo structure (BMIPP), with 4,4′‐diamino diphenyl sulfone (DDS) as hardener, have been investigated in detail. The curing behavior, thermal, mechanical and physical properties and compatibility of the blends were characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), notched Izod impact test, scanning electron microscopy (SEM) and water absorption test. DSC investigations showed that the exothermic transition temperature (Tp) of the blend systems shifted slightly to the higher temperature with increasing BMIPP content and there appeared a shoulder on the high‐temperature side of the exothermic peak when BMIPP content was above 15 wt %. TGA and DMA results indicated that the introduction of BMIPP into epoxy resin improved the thermal stability and the storage modulus (G′) in the glassy region while glass transition temperature (Tg) decreased. Compared with the unmodified epoxy resin, there was a moderate increase in the fracture toughness for modified resins and the blend containing 5 wt % of BMIPP had the maximum of impact strength. SEM suggested the formation of homogeneous networks and rougher fracture surface with an increase in BMIPP content. In addition, the equilibrium water uptake of the modified resins was reduced as BMIPP content increased. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Cyanate esters are a class of thermal resistant polymers widely used as thermal resistant and electrical insulating materials for electric devices and structural composite applications. In this article, the effect of 2,2′‐diallyl bisphenol A (DBA) on catalyzing the thermal curing of cyanate ester resins was studied. The curing behavior, thermal resistance, and thermal mechanical properties of these DBA catalyzed cyanate ester resins were characterized. The results show that DBA is especially suitable for catalyzing the polymerization of the novolac cyanate ester resin (HF‐5), as it acts as both the curing catalyst through depressing the exothermic peak temperature (Texo) by nearly 100°C and the toughening agent of the novolac cyanate ester resin by slightly reducing the elastic modulus at the glassy state. The thermogravimetric analysis and dynamic mechanical thermal analysis show that the 5 wt % DBA‐catalyzed novolac cyanate ester resin exhibits good thermal resistance with Td5 of 410°C and the char yield at 900°C of 58% and can retain its mechanical strength up to 250°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1775–1786, 2006  相似文献   

7.
Two novel liquid crystalline polymers, polydiethyleneglycol bis(4‐hydroxybenzoate) terephthaloyl and block copolymer (PDBH), were synthesized by condensation reaction. The blends of the two liquid crystalline polymers and o‐cresol formaldehyde epoxy resin were prepared by linear phenol‐formaldehyde resin as curing reagent. Both mechanical and thermal properties of the blends containing liquid crystalline polymer were improved to a certain extent. By adding 5 wt % PDBH, the impact strength, bending strength, and the glass transition temperature were enhanced by 128%, 23.84%, and 28°C, respectively, compared with the unmodified version. The results of curing kinetics showed that the curing reaction active energy of the modified system by PDBH decreased from 79.70 to 70.26 kJ/mol. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1626–1631, 2005  相似文献   

8.
Bis(4‐cyanato 3,5‐dimethylphenyl) naphthylmethane was prepared by treating CNBr with bis(4‐hydroxy 3,5‐dimethylphenyl) naphthylmethane in the presence of triethylamine at −5 to 5°C. The dicyanate was characterized by FT‐IR and NMR techniques. The prepared dicyanate was blended with commercial epoxy resin in different ratios and cured at 120°C for 1 hr, 180°C for 1 hr, and post cured at 220°C for 1 hr using diamino diphenyl methane (DDM) as curing agent. Castings of neat resin and blends were prepared and characterized by FT‐IR technique. The morphology of the blends was evaluated by SEM analysis. The composite laminates were also fabricated from the same composition using glass fiber. The mechanical properties like tensile strength, flexural strength, and fracture toughness were measured as per ASTMD 3039, D 790, and D 5528, respectively. The tensile strength increased with increase in cyanate content (3, 6, and 9%) from 322 to 355 MPa. The fracture toughness values also increased from 0.7671 kJ/m2 for neat epoxy resin to 0.8615 kJ/m2 for 9% cyanate ester epoxy modified system. The thermal properties were also studied. The 10% weight loss temperature of pure epoxy is 358°C and it increased to 398°C with incorporation of cyanate ester resin. The incorporation of cyanate ester up to 9% loading level does not affect the Tg to a very great extent. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

9.
Chemically stable polyphenylene ether (PPO) microcapsules (MCs) filled with epoxy resins (PPO‐EP MCs) were prepared using low‐molecular‐weight PPO with vinyl end‐groups as shell wall and epoxy resins as core material using an oil‐in‐water emulsion solvent evaporation method. This method for synthesizing MCs with PPO shell walls is simple, convenient and novel, which can avoid the influence of processing parameters on the chemical stability of the epoxy resin core material. The resulting PPO‐EP MCs exhibit good chemical stability below 255 °C mainly owing to the absence of a polymerization catalyst of the epoxy resins. The initial thermal decomposition temperature of the MCs is about 275 °C. The MCs were embedded in a 4,4′‐bismaleimidodiphenylmethane/O,O′‐diallylbisphenol A (BMI/BA) thermosetting resin system. When processed at high temperature (up to 220 °C), the microencapsulated epoxy resins could be released from the fractured MCs to matrix crack surfaces and bond the crack surfaces. An amount of 8 wt% MCs restored 91 and 112% of the original fracture toughness of the BMI/BA matrix when heated at 220 °C/2 h and 80 °C/1 h + 220 °C/2 h, respectively. The MCs only slightly decreased the thermal property of the matrix. © 2016 Society of Chemical Industry  相似文献   

10.
Epoxy-based nanocomposites reinforced with nonfunctionalized porous graphene (NPG), carboxylated porous graphene (CNPG), and amine-functionalized porous graphene (ANPG) were investigated with regard to mechanical properties, thermal stability, and electrical conductivity. Nanomaterials were added to the epoxy matrix in varying contents of 0.5, 1, and 2 wt %. Generally, mechanical properties were improved as a result of introducing nanomaterials into the epoxy resin. However, the amelioration of toughness was only observed in functionalized NPGs/epoxy nanocomposites. Field emission scanning electron microscopy images showed that functionalized nanomaterials induced a rougher fracture surface compared to the neat epoxy. Dynamic mechanical analysis along with differential scanning calorimetry confirmed an increment in the glass-transition temperature (Tg) of the reinforced nanocomposites. Also, they proved that functionalization made the epoxy network tougher and more flexible. The electrical conductivity and thermal stability of the epoxy resin were also improved when loaded with nanomaterials. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47475.  相似文献   

11.
Hydroxy‐terminated poly(arylene ether nitrile) oligomers with pendent tert‐butyl groups (PENTOH) were synthesized by the nucleophilic aromatic substitution reaction of 2,6‐dichlorobenzonitrile with tert‐butyl hydroquinone in N‐methyl‐2‐pyrrolidone medium with anhydrous potassium carbonate as a catalyst at 200°C in a nitrogen atmosphere. The PENTOH oligomers were blended with diglycidyl ether of bisphenol A epoxy resin and cured with 4,4′‐diaminodiphenyl sulfone. The curing reaction was monitored with infrared spectroscopy and differential scanning calorimetry. The morphology, fracture toughness, and thermomechanical properties of the blends were investigated. The scanning electron micrographs revealed a two‐phase morphology with a particulate structure of the PENTOH phase dispersed in the epoxy matrix, except for the epoxy resin modified with PENTOH with a number‐average molecular weight of approximately 4000. The storage modulus of the blends was higher than that of the neat epoxy resin. The crosslink density calculated from the storage modulus in the rubbery plateau region decreased with an increase in PENTOH in the blends. The fracture toughness increased more than twofold with the addition of PENTOH oligomers. The tensile strength of the blends increased marginally, whereas the flexural strength decreased marginally. The dispersed PENTOH initiated several toughening mechanisms, which improved the fracture toughness of the blends. The thermal stability of the epoxy resin was not affected by the addition of PENTOH to the epoxy resin. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

12.
A series of highly thermostable epoxy foams with diglycidyl ether of bisphenol‐A and bisphenol‐S epoxy resin (DGEBA/DGEBS), 4,4′‐diaminodiphenyl sulfone (DDS) as curing agent have been successfully prepared through a two‐step process. Dynamic and steady shear rheological measurements of the DGEBA/DGEBS/DDS reacting mixture are performed. The results indicate all samples present an extremely rapid increase in viscosities after a critical time. The gel time measured by the crossover of tan δ is independent of frequency. The influence of SiO2 content on morphology, thermal, and mechanical properties of epoxy foams has also been investigated. Due to the heterogeneous nucleation of SiO2, the pore morphology with a bimodal size distribution is observed when the content of SiO2 is above 5 wt %. Dynamic mechanical analysis (DMA) reveals that pure epoxy foam possesses a high glass transition temperature (206°C). The maximum of specific compressive strength can be up to 0.0253 MPa m3 kg?1 at around 1.0 wt % SiO2. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40068.  相似文献   

13.
A high performance copolymer was prepared by using epoxy (EP) resin as matrix and 3,10,17,24-tetra-aminoethoxy lead phthalocyanine (APbPc) as additive with dicyandiamide as curing agent. Fourier-transform infrared spectroscopy, dynamic mechanical analysis (DMA), differential scanning calorimetric analysis (DSC), and thermogravimetric analysis (TGA) were used to study the curing behavior, curing kinetics, dynamic mechanical properties, impact and tensile strength, and thermal stability of EP/APbPc blends. The experimental results show that APbPc, as a synergistic curing agent, can effectively reduce the curing temperature of epoxy resin. The curing kinetics of the copolymer was investigated by non-isothermal DSC to determine kinetic data and measurement of the activation energy. DMA, impact, and tensile strength tests proved that phthalocyanine can significantly improve the toughness and stiffness of epoxy resin. Highest values were seen on the 20 wt% loading of APbPc in the copolymers, energy storage modulus, and impact strength increased respectively 388.46 MPa and 3.6 kJ/m2, Tg decreased 19.46°C. TGA curves indicated that the cured copolymers also exhibit excellent thermal properties.  相似文献   

14.
The poly(sily ether) with pendant chloromethyl groups (PSE) was synthesized by the polyaddition of dichloromethylsilane (DCM) and diglycidylether of bisphenol A (DGEBA) with tetrabutylammonium chloride (TBAC) as a catalyst. This polymer was miscible with diglycidyl ether of bisphenol A (DGEBA), the precursor of epoxy resin. The miscibility is considered to be due mainly to entropy contribution because the molecular weight of DGEBA is quite low. The blends of epoxy resin with PSE were prepared through in situ curing reaction of diglycidyl ether of bisphenol A (DGEBA) and 4,4′‐diaminodiphenylmethane (DDM) in the presence of PSE. The DDM‐cured epoxy resin/PSE blends with PSE content up to 40 wt % were obtained. The reaction started from the initial homogeneous ternary mixture of DGEBA/DDM/PSE. With curing proceeding, phase separation induced by polymerization occurred. PSE was immiscible with the 4,4′‐diaminodiphenylmethane‐cured epoxy resin (ER) because the blends exhibited two separate glass transition temperatures (Tgs) as revealed by the means of differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). SEM showed that all the ER/PSE blends are heterogeneous. Depending on blend composition, the blends can display PSE‐ or epoxy‐dispersed morphologies, respectively. The mechanical test showed that the DDM‐cured ER/PSE blend containing 25 wt % PSE displayed a substantial improvement in Izod impact strength, i.e., epoxy resin was significantly toughened. The improvement in impact toughness corresponded to the formation of PSE‐dispersed phase structure. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 505–512, 2003  相似文献   

15.
A novel phosphorus‐containing epoxy resin (EPN‐D) was prepared by addition reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐oxide (DOPO) and epoxy phenol‐ formaldehyde novolac resin (EPN). The reaction was monitored by epoxide equivalent weight (EEW) titration, and its structure was confirmed by FTIR and NMR spectra. Halogen‐free epoxy resins containing EPN‐D resin and a nitrogen‐containing epoxy resin (XT resin) were cured with dicyandiamide (DICY) to give new halogen‐free epoxy thermosets. Thermal properties of these thermosets were studied by differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA), thermal mechanical analyzer (TMA) and thermal‐gravimetric analysis (TGA). They exhibited very high glass transition temperatures (Tgs, 139–175°C from DSC, 138–155°C from TMA and 159–193°C from DMA), high thermal stability with Td,5 wt % over 300°C when the weight ratio of XT/EPN‐D is ≥1. The flame‐retardancy of these thermosets was evaluated by limiting oxygen index (LOI) and UL‐94 vertical test. The thermosets containing isocyanurate and DOPO moieties showed high LOI (32.7–43.7) and could achieve UL‐94 V‐0/V‐1 grade. Isocyanurate and DOPO moieties had an obvious synergistic effect on the improvement of the flame retardancy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

16.
In this study, the gallic acid‐based epoxy resin (GA‐ER) and alkali‐catalysed biphenyl‐4,4′‐diol formaldehyde resin (BPFR) are synthesized. Glass fibre‐reinforced GA‐ER/BPFR composites are prepared. Graphene oxide (GO) is used to improve the mechanical and thermal properties of GA‐ER/BPFR composites. Dynamic mechanical properties and thermal, mechanical, and electrical properties of the composites with different GO content are characterized. The results demonstrate that GO can enhance the mechanical and thermal properties of the composites. The glass transition temperature, Tg, of the BPFR/GA‐ER/GO composites is 20.7°C higher than the pure resin system, and the 5% weight loss temperature, Td5, is enhanced approximately 56.6°C. When the BPFR: GA‐ER mass ratio is at 4 : 6 and GO content is 1.0–1.2 wt %, the tensile and impact strengths of composites are 60.97 MPa and 32.08 kJ/m2 higher than the pure resin composites, respectively. BPFR/GA‐ER composites have better mechanical properties, and can replace common BPA epoxy resins in the fabrication of composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42637.  相似文献   

17.
A study of viscoelastic properties and gelation in epoxy/phenol‐novolac blend system initiated with 1 wt % of N‐benzylpyrazinium hexafluoroantimonate (BPH) as a latent cationic thermal initiator was performed by analysis of rheological properties using a rheometer. Latent behavior was investigated by measuring the conversion as a function of curing temperature using traditional curing agents, such as ethylene diamine (EDA) and nadic methyl anhydride (NMA) in comparison to BPH. In the relationship between viscoelastic properties and gelation of epoxy/phenol‐novolac blend system, the time of modulus crossover was dependent on high frequency and cure temperature. The activation energy (Ec) for crosslinking from rheometric analysis increased within the composition range of 20–40 wt % phenol‐novolac resin. The 40 wt % phenol‐novolac (N40) to epoxy resin showed the highest value in the blend system, due to the three‐dimensional crosslinking that can take place between hydroxyl groups within the phenol resin or epoxides within the epoxy resin involving polyaddition of the initiator with BPH. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2299–2308, 2001  相似文献   

18.
Amino‐functionalized multiwalled carbon nanotubes (MWCNT‐NH2s) as nanofillers were incorporated into diglycidyl ether of bisphenol A (DGEBA) toughened with amine‐terminated butadiene–acrylonitrile (ATBN). The curing kinetics, glass‐transition temperature (Tg), thermal stability, mechanical properties, and morphology of DGEBA/ATBN/MWCNT‐NH2 nanocomposites were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis, a universal test machine, and scanning electron microscopy. DSC dynamic kinetic studies showed that the addition of MWCNT‐NH2s accelerated the curing reaction of the ATBN‐toughened epoxy resin. DSC results revealed that the Tg of the rubber‐toughened epoxy nanocomposites decreased nearly 10°C with 2 wt % MWCNT‐NH2s. The thermogravimetric results show that the addition of MWCNT‐NH2s enhanced the thermal stability of the ATBN‐toughened epoxy resin. The tensile strength, flexural strength, and flexural modulus of the DGEBA/ATBN/MWCNT‐NH2 nanocomposites increased increasing MWCNT‐NH2 contents, whereas the addition of the MWCNT‐NH2s slightly decreased the elongation at break of the rubber‐toughened epoxy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40472.  相似文献   

19.
Poly(ethylene phthalate) (PEP) and poly(ethylene phthalate–co‐ethylene terephthalate) were used to improve the brittleness of the cycloaliphatic epoxy resin 3,4‐epoxycyclohexylmethyl 3,4‐epoxycyclohexane carboxylate (Celoxide 2021?), cured with methyl hexahydrophthalic anhydride. The aromatic polyesters used were soluble in the epoxy resin without solvents and effective as modifiers for toughening the cured epoxy resin. For example, the inclusion of 20 wt % PEP (MW, 7400) led to a 130% increase in the fracture toughness (KIC) of the cured resin with no loss of mechanical and thermal properties. The toughening mechanism is discussed in terms of the morphological and dynamic viscoelastic behaviors of the modified epoxy resin system. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 388–399, 2002; DOI 10.1002/app.10363  相似文献   

20.
Innovative reactive blends containing epoxy and brominated epoxy (BE) incorporated with resole-type phenolic were studied with the aim to elucidate the curing kinetics and the final thermomechanical characteristics of this unique system. Curing kinetics was investigated by means of the activation energy determined using differential scanning calorimetry (DSC ) at various heating rates analyzed by the Arrhenius equation. Both DSC and Fourier transform infrared revealed that bromine elimination at elevated temperatures (above 220 °C) had lowered the activation energy in the case of BE containing phenolic blends. The thermomechanical properties showed that the addition of conventional epoxy to resole decreased its thermal properties and modulus compared to neat resole. Distinctively, BE/resole blends exhibited increased glass-transition temperature, compared to diglycidyl ether of bisphenol A/resole blends in combination with higher elongation and toughness compared to neat resole. It was concluded that BE/epoxy resin/phenolic reactive systems offer high T g, mechanical properties and toughness and hence are applicable for structural adhesives and for matrices of polymer-fiber composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47172.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号