首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two latices—the poly(dimethylsiloxane) (PDMS)/poly(methyl methacrylate‐co‐butyl acrylate‐co‐methacrylic acid) system (PA latex) and the PDMS/poly(vinyl acetate‐co‐butyl acrylate) system (PB latex)—were prepared by seeded emulsion polymerization, and PA/PB complex latices were obtained through the interparticle complexation of the PA latex with the PB latex. In addition, for the further study of the interparticle complexation of the PA latex with the PB latex, copolymer latices [PDMS/methyl methacrylate‐co‐butyl acrylate‐co‐vinyl acetate‐co‐methacrylic acid) (PC)] were prepared according to the monomer recipe of the complex latices and the polymerization process of the component latices. The properties of the obtained polymer latices and complex latices were investigated with surface‐tension, contact‐angle, and viscosity measurements. The mechanical properties of the coatings obtained from the latices were investigated with tensile‐strength measurements. The results showed that, in comparison with the two component latices (PA latex and PB latex) and the corresponding copolymer latices (PC latices), the PA/PB complex latices had lower surface tension, lower viscosities, and better wettability to different substrates. The tensile strengths of the coatings obtained from the complex latices were higher than the tensile strengths of the coatings from the two component latices and copolymer latices. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2522–2527, 2004  相似文献   

2.
Composite films composed of poly(methyl methacrylate‐co‐butyl acrylate) (PMMABA) and nematic‐type liquid crystals E7 and E8 (commercial products from E. Merck, Darmstadt, Germany) were prepared through solvent casting in chloroform. The morphology and electrooptic responses were studied. Scanning electron microscopy observations showed that the liquid‐crystal phase (E7 or E8), as larger, elongated, interconnected cavities, was continuously embedded in a spongelike PMMABA matrix. At a specific level of the liquid‐crystal (E7 or E8) loading (30/70 wt %), the effects of the voltage, temperature, and frequency of an applied alternating‐current electric field on the transmittance of the composite films were measured with a He–Ne laser (wavelength = 632.8 nm). The results were interpreted in terms of the aggregation structure, interfacial interaction, and solubility of the liquid crystal in the matrix polymer. The results indicated that, under these experimental conditions, the output could be controlled to a desired level by the selection of suitable liquid crystals to prepare polymer‐dispersed liquid‐crystal, electrooptic, active composite films with a response time of the order of only milliseconds or less. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

3.
Core–shell nanomaterials of poly(butyl acrylate)‐poly(methyl methacrylate) were synthesized using a differential microemulsion polymerization method for being used as polyacrylate‐based optical materials, which meet the requirement of anti‐crease‐whitening and proper mechanical strength. The effects of reaction temperature and surfactant amount on the particle sizes, as well as the effect of reaction temperature on the conversion and solid content were investigated to reveal the dependence of the application properties on the reaction conditions. The spherical morphology of core–shell nanoparticles was also studied via transmission electron microscopy. The resulting polymers with a core–shell monomer ratio of butyl acrylate/methyl methacrylate at 32/10 (vol/vol) demonstrated the optimal balanced properties in the anti‐crease‐whitening and mechanical property, confirmed by the visible light transmittance measurement and the dynamic analysis of the viscoelastic properties of the synthesized core–shell nanomaterials. The smaller the particle size, the better the transparency of the resulting polymer films. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39991.  相似文献   

4.
Nanocomposites based on an organically modified bentonite, from Maghnia Algeria (OBT) and a copolymer of methyl methacrylate with 4‐vinylpyridine (PMM4VP) synthesized in dioxan at room temperature using a neutral Ni(II)α‐benzoinoxime complex as a single component initiator, were elaborated via solution intercalation method and characterized by several techniques. X‐ray diffraction and transmission electron microscopy investigations indicate that mainly exfoliated and intercalated PMM4VP/OBT nanocomposites were elaborated and that the degree of exfoliation decreases with an increase of the OBT loading. Thermal analyses of these nanocomposites compared with their virgin copolymer confirmed a significant improvement of their thermal stability as evidenced by an increase of 28°C in their onset degradation temperatures. In addition, differential scanning calorimetry displayed an increase in the range of 12–18°C in their glass transition temperatures relative to their virgin copolymer. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
The drilling of petroleum wells requires the use of suitable drilling fluids to ensure efficient operation without causing rock damage. Specific polymers have been used to control infiltration during drilling, to reduce operational problems. In this study, spherical microparticles of poly(methyl methacrylate‐co‐vinyl acetate) were synthesized (by suspension polymerization), characterized, and evaluated in terms of their performance in controlling filtrate loss of aqueous fluids. A filter press test with ceramic disk, simulating the rock, was used. The performance of the synthesized materials was compared with commercial polymers. It was observed that the performance of the material is directly associated with the relation between particle size and pore size of the rock specimen. Furthermore, for a suitable particle size, the rubbery characteristic of the material produces a more efficient filter cake, for filtrate control. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40646.  相似文献   

6.
In this study, we propose an efficient method for preparation of large scale, monodisperse poly(methyl methacrylate‐co‐butyl acrylate) latexes by application of the low power ultrasound irradiation. The effect of polymerization temperature and initiator concentration on the polymerization nature, particle size, and particle size distribution were investigated. Results indicated that the ultrasound pulses in the first minutes of polymerization increase instant free radical to monomer ratio as well mixing efficiency which led to higher monomer conversion, improved polymerization rate (especially at first 15 min of the reaction), and remarkable decrease in molecular weight distribution. Transmittance electron microscopy (TEM) and dynamic light scattering (DLS) revealed that the particle size and particle size distribution were significantly affected, particle size decreased, and more uniform particles were obtained. Dynamic mechanical thermal analysis also showed that the initiator concentration affected glass transition temperature (Tg) of the final copolymers and in the case of ultrasound‐assisted emulsion polymerization Tg was in a very good agreement with theoretical predictions for copolymerization. POLYM. ENG. SCI., 56:214–221, 2016. © 2015 Society of Plastics Engineers  相似文献   

7.
Poly(p‐styrene sulfonate‐co‐acrylic acid sodium) (PSA) from the copolymerization of acrylic acid sodium and p‐styrene sulfonate monomers were used to dope poly(3,4‐ethylene dioxythiophene) (PEDOT) to generate PEDOT–PSA antistatic dispersions. Compared to those of the PEDOT–poly(p‐styrene sulfonate sodium) (PSS), the physical and electrical properties of the PEDOT–PSA conductive liquids were much better. The PEDOT–PSA films possessed a better water resistance without a decrease in the conductivity. The sheet resistance of the PEDOT–PSA–poly(ethylene terephthalate) (PET) films was about 1.5 × 104 Ω/sq with a 100 nm thickness, the same as the PEDOT–PSS–PET films. The transmittance of the PEDOT–PSA–PET films exceeded 88%. Furthermore, the environmental dispersity of the PEDOT–PSA antistatic dispersion was apparently improved by the dopant PSA so that the stability was extraordinarily promoted. Meanwhile, the water resistances of the PEDOT–PSA–PET and PEDOT–PSA films were also enhanced. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45163.  相似文献   

8.
In this article, semi‐interpenetrating polymer network (Semi‐IPNs) based on nitrile rubber (NBR) and poly(methyl methacrylate‐co‐butyl acrylate) (P(MMA‐BA)) were synthesized. The structure and damping properties of the prepared Semi‐IPNs blends were characterized and by fourier transform infrared spectrum (FTIR), dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), thermogravimetric analysis (TGA/DTG), and tensile mechanical properties. The results showed that interpenetrating network based on P(MMA‐BA) and NBR was successfully obtained, which showed the improved thermal stability compared to NBR/P(MMA‐BA)‐based two‐roll mill blends. Furthermore, Semi‐IPNs showed significantly better the dynamic mechanical properties than that of the two‐roll mill system. With the increasing feed ratio of BA and MMA during the preparation of Semi‐IPNs, the loss peak position for P(MMA‐BA) in NBR/PMMA IPNs shifted to a lower temperature from 20°C to ?17°C, and when NBR in Semi‐IPNs was accounted for 40 wt %, the dynamic mechanical thermal analysis showed that much more advanced damping material with wider temperature range (?30°C < T < 80°C) as tan δ > 0.45 can be achieved. Therefore, it was expected as a promising way to obtain the excellent damping materials with good oil‐resisted properties according the Semi‐IPNs system. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40217.  相似文献   

9.
Gelatin‐g‐poly (butyl acrylate) copolymers were prepared with gelatin and butyl acrylate. The effects of various reaction parameters, including the concentration of the monomer, the concentration of the initiator, the concentration of gelatin, the reaction time, and the temperature, on the swelling behavior were studied systematically. In addition, the effect of the intercalation of graft copolymers with montmorillonite on the swelling behavior was investigated. The results indicated that the graft copolymerization and intercalation with montmorillonite could greatly reduce the swelling degree of gelatin. The swelling process of the copolymers followed second‐order kinetics identical to those of the original gelatin. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1033–1037, 2005  相似文献   

10.
The drying kinetics and bulk morphology of pigmented latex films obtained from poly(n‐butyl methacrylate‐con‐butyl acrylate) latex particles functionalized with carboxyl groups and ground calcium carbonate blends were studied. Latex/pigment blends with higher carboxyl group coverage on the latex particle surfaces dried faster than films with few or no carboxyl groups present. The latex/pigment dispersions also dried faster when there was more stabilizer present in the blend system because of the hydrophilic nature of the stabilizer. The net effect of increasing the pigment volume concentration in the blend system was to shorten the drying time. The bulk morphologies of the freeze‐fractured surfaces of the pigmented latex films were studied with scanning electron microscopy. Scanning electron microscopy analysis showed that increased surface coverage of carboxyl groups on the latex particles in the latex/pigment blends resulted in the formation of smaller pigment aggregates with a more uniform size distribution in the blend films. In addition, the use of smaller latex particles in the blends reduced the ground calcium carbonate pigment aggregate size in the resulting films. Scanning electron microscopy analysis also showed that when the initial stabilizer coverage on the latex particles was equal to 18%, smaller aggregates of ground calcium carbonate were distributed within the copolymer matrix of the blend films in comparison with the cases for which the initial stabilizer coverage on the latex particles was 8 or 36%. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2267–2277, 2006  相似文献   

11.
The mechanical and surface properties of films prepared from model latex/pigment blends were studied using tensile tests, surface gloss measurements, and atomic force microscopy. Functionalized poly(n‐butyl methacrylate‐con‐butyl acrylate) [P(BMA/BA)] and ground calcium carbonate (GCC) were used as latex and extender pigment particles, respectively. The critical pigment volume concentration of this pigment/latex blend system was found to be between 50 and 60 vol % as determined by surface gloss measurement and tensile testing of the blend films. As the pigment volume concentration increased in the blends, the Young's modulus of the films increased. Nielsen's equations were found to fit the experimental data very well. When the surface coverage of carboxyl groups on the latex particles was increased, the yield strength and Young's modulus of the films both increased, indicating better adhesion at the interfaces between the GCC and latex particles. When the carboxyl groups were neutralized during the film formation process, regions with reduced chain mobility were formed. These regions acted as a filler to improve the modulus of the copolymer matrix and the modulus of the resulting films. The carboxyl groups on the latex particle surfaces increased the surface smoothness of the films as determined by surface gloss measurement. When the initial stabilizer coverage of the latex particles was increased, the mechanical strength of the resulting films increased. At the same time, rougher film surfaces also were observed because of the migration of the stabilizer to the surface during film formation. With smaller‐sized latex particles, the pigment/latex blends had higher yield strength and Young's modulus. Higher film formation temperatures strengthen the resulting films and also influence their surface morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4550–4560, 2006  相似文献   

12.
The emulsion polymerization of the monomers methyl methacrylate (MMA) and 2‐ethylhexyl acrylate (EHA) was studied to investigate the effect of the crosslinkable monomer poly(propylene glycol diacrylate) (PPGDA). IR spectroscopy, NMR, differential scanning calorimetry, gel permeation chromatography, and scanning electron microscopy were used to characterize the synthesized polymers. These polymers were coated on glass panels and cured at appropriate temperatures to study the physical properties, swelling behavior, surface tension, and contact angle of these polymer latices. The results show that as the concentration of EHA monomer increased, the surface tension of the latices decreased. The copolymers were characterized by 1H‐NMR spectroscopy to ensure the absence of unreacted monomer, and the results confirm the incorporation of EHA units in the copolymer. The contact angle of the latices on the glass substrate was smaller than that on the metal. The swelling mechanism of the film showed that the Fickian diffusion coefficient with 10 wt % PPGDA was at a minimum value and was the most highly crosslinked polymer among the samples. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Poly(methyl methacrylate‐co‐butyl methacrylate) [P(MMA‐co‐BMA)] nanoparticles were synthesized via emulsion polymerization, and incorporated into natural rubber (NR) by latex compounding. Monodispersed, core‐shell P(MMA‐co‐BMA)/casein nanoparticles (abbreviated as PMBMA‐CA) were produced with casein (CA) as surfactant. The chemical structure of P(MMA‐co‐BMA) copolymers were confirmed by 1H‐NMR and FTIR analyses. Transmission electron microscopy demonstrated the core–shell structure of PMBMA‐CA, and PMBMA‐CA homogenously distributed around NR particles, indicating the interaction between PMBMA‐CA and NR. As a result, the tensile strength and modulus of NR/PMBMA‐CA films were significantly enhanced. The tensile strength was increased by 100% with 10% copolymer addition, when the molar ratio of MMA:BMA was 8:2. In addition, scanning electron microscopy and atomic force microscopy results presented that the NR/PMBMA‐CA films exhibited smooth surfaces with low roughness, and PMBMA‐CA was compatible with NR. FTIR‐ATR analyses also suggested fewer PMBMA‐CA nanoparticles migrated out of NR. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43843.  相似文献   

14.
Waterborne polyacrylate/poly(silicone‐co‐acrylate) emulsions were synthesized to develop coated fertilizers. The effects of the n‐butyl acrylate (BA)/methyl methacrylate (MMA) ratio, vinyltriethoxysilane, and synthesis method on the water resistance, glass‐transition temperature, mechanical properties, and nutrient‐release profiles were investigated. The results show that miniemulsion polymerization with a BA/MMA ratio of 55:45 was the most suitable for slow nutrient‐release applications. Under these conditions, the preliminary solubility rate of the nutrient was about 3%, and the 30‐day cumulative nutrient release was 15% at 25°C. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40369.  相似文献   

15.
Poly(butyl acrylate)/poly(methyl methacrylate) (PBA/PMMA) core–shell particles embedded with nanometer‐sized silica particles were prepared by emulsion polymerization of butyl acrylate (BA) in the presence of silica particles preabsorbed with 2,2′‐azobis(2‐amidinopropane)dihydrochloride (AIBA) initiator and subsequent MMA emulsion polymerization in the presence of PBA/silica composite particles. The morphologies of the resulting PBA/silica and PBA/silica/PMMA composite particles were characterized, which showed that AIBA could be absorbed effectively onto silica particles when the pH of the dispersion medium was greater than the isoelectric potential point of silica. The critical amount of AIBA added to have stable dispersion of silica particles increased as the pH of the dispersion medium increased. PBA/silica composite particles prepared by in situ emulsion polymerization using silica preabsorbed with AIBA showed higher silica absorption efficiency than did the PBA/silica composite particles prepared by direct mixing of PBA latex and silica dispersion or by emulsion polymerization in which AIBA was added after the mixing of BA and silica. The PBA/silica composite particles exhibited a raspberrylike morphology, with silica particles “adhered” to the surfaces of the PBA particles, whereas the PBA/silica/PMMA composite latex particles exhibited a sandwich morphology, with silica particles mainly at the interface between the PBA core and the PMMA shell. Subsequently, the PBA/silica/PMMA composite latex obtained had a narrow particle size distribution and good dispersion stability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3425–3432, 2006  相似文献   

16.
Monodispersed crosslinked cationic poly(4‐vinylpyridine‐co‐butyl acrylate) [P(4VP‐BA)] seed latexes were prepared by soapless emulsion polymerization, using 2,2′‐azobismethyl(propionamidine)dihydrochloride (V50) as an initiator and divinylbenzene (DVB) or ethylene glycol dimethacrylate (EGDMA) as a crosslinker. The optimum condition to obtain monodispersed stable latex was investigated. It was found that the colloidal stability of the P4VP latex can be improved by adding an adequate amount of BA (BA/4VP = 1/4, w/w), and adopting a semicontinuous monomer feed mode. Subsequently, poly(4‐vinylpyridine‐co‐butyl acrylate)/Poly(styrene‐co‐butyl acrylate) [P(4VP‐BA)/P(ST‐BA)] composite microspheres were synthesized by seeded polymerization, using the above latex as a seed and a mixture of ST and BA as the second‐stage monomers. The effects of the type of crosslinker, the degree of crosslinking, and the initiators (AIBN and V50) on the morphology of final composite particles are discussed in detail. It was found that P(4VP‐BA)/P(ST‐BA) composite microspheres were always surrounded by a PST‐rich shell when V50 was used as initiator, while sandwich‐like or popcorn‐like composite particles were produced when AIBN was employed. This is because the polarity of the polymer chains with AIBN fragments is lower than for the polymer with V50 fragments, hence leading to higher interfacial tension between the second‐stage PST‐rich polymer and the aqueous phase, and between PST‐rich polymer and P4VP‐rich seed polymer. As a result, the seed cannot be engulfed by the PST‐rich polymer. Furthermore, the decrease of Tg of the second‐stage polymer promoted phase separation between the seeds and the PST‐rich polymer: sandwich‐like particles formed more preferably than popcorn‐like particles. It is important knowledge that various morphologies different from PST‐rich core/P4VP‐rich shell morphology, can be obtained only by changing the initiator, considering P4VP is much more hydrophilic than PST. The zeta potential of composite particles initiated by AIBN in seeded polymerization shifted from a positive to a negative charge. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1190–1203, 2002  相似文献   

17.
Poly(acrylonitrile‐co‐methyl acrylate) [P(AN‐MA)] flat microfiltration membranes were successfully prepared via the thermally induced phase separation (TIPS) method, by using low polar caprolactam (CPL) and methoxypolyethylene glycol 550 (MPEG 550) as the mixed diluent. In this work, P(AN‐MA) membranes exhibit bi‐continuous networks, porous surfaces, high porosity, and big pore size, when membrane fabricated from a high MPEG 550 content, low P(AN‐MA) concentration, and small cooling rate, it can be dry state preservation and do not need to be impregnated by any solvent. When the ternary system was composed of 15 wt % P(AN‐MA), 12.5 wt % CPL, and 87.5 wt % MPEG 550, formed at 25 °C air bath, membrane has the highest water flux of 4420 L m?2 h?1. The obtained P(AN‐AN) membrane displays a high carbonic black ink rejection ranging from 83.7 to 98.5 wt %. Moreover, P(AN‐MA) polymer not only retains the advantages of PAN but also reduces the polar component from 16.2 to 10.77 MPa0.5. It can be used membrane matrix to obtain pore structure and excellent mechanical property membrane via TIPS. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46173.  相似文献   

18.
An absorbent for benzene series with silica/poly(styrene‐co‐butyl acrylate) core/shell structure was prepared via emulsion polymerization. The effects of emulsifier dosage, monomer concentration, and crosslinker dosage on the absorption of the core/shell composite particles were investigated. The composite particles with good absorbency could be obtained when the emulsifier concentration was 2.5 g/L, monomer concentration was 40 g/L, crosslinker dosage was 2.0% (based on the total mass of the monomer), and the initiator dosage was 1.0%. The composite particles exhibited a rapid absorption and the absorption process conformed to the quasi‐second order kinetics. Fourier‐transform infrared spectroscopy, scanning electron microscope, and energy dispersive spectrometer (EDS) showed the presence of copolymer layer on the surface of silica. The work provided a new path to fabricate novel composite absorbent particles for a wide range of applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46172.  相似文献   

19.
The phase behavior and kinetics of phase separation for blends of the random copolymer poly(styrene‐co‐methyl methacrylate) (SMMA) and poly(styrene‐co‐acrylonitrile) (SAN) were studied by using small‐angle laser light scattering. The partially miscible SMMA/SAN blends undergo spinodal decomposition (SD) and subsequent domain coarsening when quenched inside the unstable region. For blends of SMMA and SAN, the early stages of the phase separation process could be observed, unlike a number of other blends where the earliest stages are not visible by light scattering. The process was described in terms of the Cahn–Hilliard linear theory. Subsequently, a coarsening process was detected and the time evolution of qm at the beginning of the late stages of phase separation followed the relationship qmt?1/3, corresponding to an evaporation–condensation mechanism. Self‐similar growth of the phase‐separated structures at different timescales was observed for the late stage. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
Seeded preswelling emulsion polymerization was carried out by using monodispersed poly(4‐vinylpyridine‐co‐butyl acrylate) [P(4VP‐BA)] particles as the seed, and styrene and butyl acrylate as the second‐stage monomers under different polymerization conditions, to obtain hemispherical polystyrene (PST)‐rich–P4VP‐rich microspheres. Prior to polymerization, toluene was added into the preswelling system together with the second‐stage monomers. It was found that, with the increase of the amount of toluene, the particle morphology showed a tendency toward desirable hemispherical structure, and the colloidal stability of composite latex was improved. When the weight ratio of toluene/seed latex was increased up to 7.5/40 (g/g), the stable hemispherical latex could be obtained. However, when toluene was not added, the coagulum formed on the wall of the reactor during polymerization, and the composite particles with multiple surface domains (such as sandwich‐like, popcorn‐like) were formed. In addition, the final morphology of composite particles was influenced by the polarity of the seed crosslinker and the hydrophilicity of the second‐stage initiator, which could affect the mobility of poly(styrene‐co‐butyl acrylate) [P(ST‐BA)] chains. The morphology development during the polymerization was investigated in detail, and a schematic model was derived to depict the formation mechanism of hemispherical P(4VP‐BA)/P(ST‐BA) composite microspheres. The results revealed that the mobility of the P(ST‐BA) chains influenced the diffusion of the P(ST‐BA) domains on the surface of the P(4VP‐BA) matrix. When the mobility of the P(ST‐BA) chains allowed small‐size P(ST‐BA) domains to coalesce into one larger domain, complete phase‐separated morphology (hemisphere) could be achieved. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3811–3821, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号