共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
为了提高PVDF中空纤维膜在处理含油废水过程中的亲水性能、抗压实性能和抗污染性能,实验以介孔Al2O3为无机添加粒子,采用溶液纺丝法制备出介孔Al2O3/PVDF复合中空纤维膜。通过扫描电子显微镜和傅里叶红外光谱观察介孔Al2O3/PVDF复合中空纤维膜的形貌和成分,结果证明介孔Al2O3成功地添加到PVDF中空纤维膜中。通过接触角,纯水和含油废水通量的测试,结果表明介孔Al2O3的添加改善了PVDF膜的亲水性能、抗压实性能和抗污染性能。 相似文献
3.
PET threads were incorporated in the support layer of hollow fiber membrane in axial direction as a special reinforcement material for the purpose of improving the mechanical properties of PVDF hollow fiber membranes. It was found that the reinforcement threads had a limited effect on the separation-related properties of the membrane, such as porosity and pore size, but the tensile strength of the reinforced membrane was improved several folds. Also, the criterion of choosing reinforced fiber materials was suggested. 相似文献
4.
针对普通聚偏二氟乙烯(PVDF)中空纤维膜具有疏水性强、易污染的应用缺陷,在制备纳米粒子掺杂改性的PDVF-ZrO2复合中空纤维膜前期工作基础上,表征了其微观结构,并考察了其在油水体系中的分离效果。微观结构检测表明,随着ZrO2含量的增大,复合膜的断面微观结构完成由指状大孔向海绵状结构的转化。PDVF-ZrO2复合膜的接触角和牛血清蛋白(BSA)吸附实验结果显示其亲水性及抗污染性能均得到了提高。进一步考察了PDVF-ZrO2复合中空纤维渗透分离性能,ZrO2纳米粒子质量分数为0.3%时,显示了最佳的渗透性能。在乳化油废水处理过程中,在油质量浓度为1 g/L,操作压力为0.1MPa、搅拌强度为20 r/min条件下,通量为105 L/(m2.h),TOC去除率为95.4%,表明具有较好的废水处理效果。 相似文献
5.
研究了较低剂量的γ辐射对聚偏氟乙烯中空纤维膜的结构与性能的影响。在试验中,选用44.57 Gy/min的剂量率,分别采用2,4,6,10 kGy剂量对浸泡在pH=10的氢氧化钠溶液中的中空纤维膜进行辐照。对辐照前后的样品作相关的性能测试,结果表明:随着辐射剂量的增加,透水通量先增大后减小,最大孔径持续减小,最大幅度至14.9%,分离性能增强。在≤10 kGy的剂量内,断裂强力呈现增大趋势,断裂伸长率呈现下降趋势,爆破强度先增大后减小。工艺优化的剂量为2 kGy。微观形貌和红外分析表明,辐射对膜的外表面化学基团及内表面的形貌产生一定的影响。热分析表明,辐照使膜的结晶度有所提高。 相似文献
6.
7.
8.
Microporous polypropylene membranes were low temperature plasma treated with acrylic acid and allylamine. Parameters of plasma treatment were examined and optimized for the enhancement of membrane performance properties. Excess power damaged the membrane surface and excess monomer flow rate increased the reactor pressure to interfere with the glow discharge. Longer plasma treatment time resulted in even more plasma coating and micropore blocking. The contact angle with water decreased and wettabilities increased with the increase of plasma treatment time. Deposition of the plasma polymer on the membrane surface was confirmed by FTIR/ATR spectra of the treated surface. In determining the flux, the hydrophilicity of the surface played a role as important as that of the micropore size. Adequate plasma treatment could enhance both water flux and solute removal efficiency. Results from the BSA (bovine serum albumin) solution test confirmed that fouling was greatly reduced after the plasma treatment. The BSA solution flux through the plasma‐treated membranes depended on pH, whereas pH variation had no serious effects on the untreated membrane. Modification of the surface charge by the plasma treatment should exert a substantial influence on the adsorption and removal of BSA. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1555–1566, 2001 相似文献
9.
Preparation and properties of PVDF/PVA hollow fiber membranes 总被引:1,自引:0,他引:1
On principle of polymer blend phase separation, PVDF/PVA hollow fiber membranes were prepared using phase inversion method. The membrane morphology and performance varied with the blending ratio. The PVDF/PVA blends showed incompatibility by the results of dynamic mechanical analysis (DMA) and infrared attenuated total reflection (FTIR-ATR) sampling technique. Based on bursting pressure and tensile strengths results, we suggest that the mechanical properties of PVDF/PVA blend membranes are worse than that of PVDF membrane. PVA can improve the hydrophilicity of PVDF/PVA hollow fiber membranes, which could be illuminated by the decrease in contact angle, the increase in equilibrium water content (EWC) and the variety in dynamic moisture regain. The pure water flux increases while the rejection ratio decreases with PVA content increasing. Moreover, PVA can improve the anti-fouling property of PVDF/PVA hollow fiber membranes, which could be illuminated by the result of increase coefficient of resistance. 相似文献
10.
11.
以二苯甲酮和N,N-二甲基乙酰胺为稀释剂,酚酞型聚醚砜(PES-C)为添加剂,通过热致相分离法制备了聚偏氟乙烯(PVDF)中空纤维膜。采用扫描电镜观察了膜的结构,测试了膜的纯水通量。在膜生物反应器(MBR)中测试了膜的污水通量和出水的化学需氧量及氨氮指标。该法制得的膜具有较为致密的皮层结构和疏松的支撑层结构,添加质量分数为2%的PES-C制备的PVDF膜与PVDF膜相比纯水通量增加60%,污水通量增加37.8%,出水COD去除率增加了3.32%,NH4+—N去除率增加了2.2%,且MBR出水达到排放标准。 相似文献
12.
13.
Gas–liquid hollow fiber membrane contactor can be a promising alternative for the CO2 absorption/stripping due to the advantages over traditional contacting devices. In this study, the structurally developed hydrophobic polyvinylidene fluoride (PVDF) hollow fiber membranes were prepared via a wet spinning method. The membranes were characterized in terms of morphology, permeability, wetting resistance, overall porosity and mass transfer resistance. From the morphology analysis, the membranes demonstrated a thin outer finger-like layer with ultra thin skin and a thick inner sponge-like layer without skin. The characterization results indicated that the membranes possess a mean pore size of 9.6 nm with high permeability and wetting resistance and low mass transfer resistance (1.2 × 104 s/m). Physical CO2 absorption/stripping were conducted through the fabricated gas–liquid membrane contactor modules, where distilled water was used as the liquid absorbent. The liquid phase resistance was dominant due to significant change in the absorption/stripping flux with the liquid velocity. The CO2 absorption flux was approximately 10 times higher than the CO2 stripping flux at the same operating condition due to high solubility of CO2 in water as confirmed with the effect of liquid phase pressure and temperature on the absorption/stripping flux. 相似文献
14.
15.
《Ceramics International》2021,47(24):34020-34027
Nanofiltration ceramic hollow fiber membranes were developed to simplify the manufacturing process and improve water and organic solvent permeation performance. The alumina hollow fiber support was prepared by a phase-inversion/sintering method, and a γ-Al2O3 sol was coated thereon as a selective layer. Polyvinyl alcohol and ethanol were used as the drying control chemical additive in the coating solution, so that a coating layer could be formed without defects in only one coating step. The coating layer thickness could be adjusted to 0.6–2 μm depending on the coating drawing speed. A sintering temperature of 350 °C was selected to provide both reasonable water permeability (6.91 LMH/bar) and rejection (a molecular weight cutoff of 1000 Da or less) and to form a stable γ-Al2O3 phase. In the case of a membrane that was surface-modified with (3-chloropropyl)-trimethoxysilane, the permeability of toluene and hexane was 2.3 and 4.3 LMH/bar, respectively. The newly developed ceramic membrane showed excellent permeability and separation properties, as well as potential effectiveness for organic solvent nanofiltration applications. 相似文献
16.
17.
采用低温水等离子体技术,在三通道聚氯乙烯(PVC)膜表面接枝了甲基丙烯氧基苄基二甲基氯化铵(DMAE)单体,增强了膜亲水和抗菌性能。通过红外分析,表明DMAE成功接枝到了PVC膜上,水通量提高两倍,PVC-ir-H2O膜(通过水等离子体处理的膜)对牛血清蛋白(BSA)的吸附能力下降67%,对BSA溶液的通量从7.7提高至40 kg·m-2·h-1,并且对BSA的截留能力不变。通过静态及动态抗菌实验,接枝后的PVC膜(PVCg-PMAE膜)抗菌率达到100%,膜组件运行中的抗菌率也达到82%以上。在保证细菌截留率100%的同时,其渗透通量提高三倍。该膜表面修饰工程技术能实现膜表面的均一化改性,且绿色环保、操作简便、成本低,改性膜在饮用水处理领域,尤其是家用净水器中展现了很好的应用前景。 相似文献
18.
19.
聚偏氟乙烯(PVDF)超滤膜生物反应器处理小区生活污水的试验研究 总被引:3,自引:0,他引:3
利用CASS与PVDF中空纤维超滤膜组件组合工艺进行模拟小区生活污水处理的试验研究,试验结果表明:当水力停留时间为12h ,CODCr浓度在2 15~6 77mg·L-1之间时,该工艺出水CODCr稳定在30mg·L-1左右;氨氮浓度为2 2 .2~4 1.2mg·L-1时,出水NH3 -N最低可达0 .2mg·L-1,去除率达到90 %以上;出水pH值在7.2 6~7.89之间;出水浊度小于0 .5 ,出水水质优于回用水标准,可直接回用。而且随着膜的污染,出水水质并没有受到任何影响。 相似文献
20.
Jiahong Li Jianyu Wang Yaxuan Liu Da Bian Yongwu Zhao 《International Journal of Applied Ceramic Technology》2022,19(5):2648-2663
In this paper, a micro–nano structural ceramic coating with good hydrophobicity and wear resistance was successfully prepared by sol–gel method, which is assisted by pore-forming agent and nanoparticles 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane modified. The surface morphology, hardness, roughness, wettability, and tribological properties of three different surface coatings were characterized. With the complication of the surface structure, the roughness of the coating increases from 1.30 to 2.05 μm. Under the combined effect of roughness and long hydrophobic chains, the contact angles of the coatings before and after modification under saline conditions increased from 56.31 to 140.59° (pH4); from 55.58 to 134.40° (pH7); from 53.80 to 132.26° (pH10). Through the comparison of wear rate and wear morphology, it is found that the micro–nano structure coating has the lowest wear rate (0.705 × 10–6 mm3·N–1·s–1) and the smallest plastic deformation. This means that in addition to the good hydrophobicity and chemical stability, the micro–nano structure on the surface also improves the wear resistance of the coating. 相似文献