首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyacrylamide‐b‐poly(methacrylic acid) was prepared on the surface of Au electrode (Au/PAM/PMAA) for Pb2+ ion electrochemical sensing via metal‐free visible‐light‐induced atom transfer radical polymerization, which was very simple, convenient, and environmentally friendly. Au/PAM/PMAA was carefully examined by cyclic voltammetry, electrochemical impedance spectroscopy, and X‐ray photoelectron spectroscopy. Further, Au/PAM/PMAA was successfully used for the determination of Pb2+ ion by differential pulse anodic stripping voltammetry. Under the optimal conditions, a linear response from 1.0 × 10?11 to 1.0 × 10?4 mol/L with detection limit of 2.5 × 10?12 mol/L (S/N = 3) was achieved from the results of experiments. Comparing with similar Pb2+ sensors, the broader linear range and lower detection limit suggested the promising prospect of Au/PAM/PMAA. In a word, the work of this article had an important significance for the polymer‐modified electrodes and the sensitive detection of Pb2+. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45863.  相似文献   

2.
Amino‐functionalized multi walled nanotube (MWCNT‐NH2) filled isotactic PP and isotactic‐syndiotactic (70:30) mixed PP based melt‐mixed nanocomposites have been comparatively evaluated with regard to morphological, rheological and thermo‐mechanical properties. The ratio of mean free space lengths (Lf) to infiltrated mean free space lengths (Linf) between nanotubes in isotactic‐syndiotactic (70:30) blended matrix based nanocomposites increased relatively indicating a dispersed‐morphology. The rheological percolation threshold increased up to a higher extent of MWCNT‐NH2 loading (from øc ~ 2.3 × 10?4 in isotactic to øc ~ 11 × 10?4 in iso‐syndio blend) accompanied with the formation of a mechanically responsive network structure. van‐GurpPalmen plot showed a transition in the rheological response as a consequence of network morphology getting shifted to higher concentration of MWCNT‐NH2 in the isotacticsyndiotactic mixed PP based nanocomposites than in the isotactic based one. Constitutive modeling of complex viscosity response of the nanocomposites led to functional correlation between the percolation and relaxation dynamics of polymer chains. POLYM. ENG. SCI., 58:1115–1126, 2018. © 2017 Society of Plastics Engineers  相似文献   

3.
Solvents and electrolytes play an important role in the fabrication of dye‐sensitized solar cells (DSSCs). We have studied the poly(ethylene oxide)‐poly(methyl methacrylate)‐KI‐I2 (PEO‐PMMA‐KI‐I2) polymer blend electrolytes prepared with different wt % of the 2‐mercaptopyridine by solution casting method. The polymer electrolyte films were characterized by the FTIR, X‐ray diffraction, electrochemical impedance and dielectric studies. FTIR spectra revealed complex formation between the PEO‐PMMA‐KI‐I2 and 2‐mercaptopyrindine. Ionic conductivity data revealed that 30% 2‐mercaptopyridine‐doped PEO‐PMMA‐KI‐I2 electrolyte can show higher conductivity (1.55 × 10?5 S cm?1) than the other compositions (20, 40, and 50%). The effect of solvent on the conductivity and dielectric of solid polymer electrolytes was studied for the best composition (30% 2‐mercaptopyridine‐doped PEO‐PMMA‐KI‐I2) electrolyte using various organic solvents such as acetonitrile, N,N‐dimethylformamide, 2‐butanone, chlorobenzene, dimethylsulfoxide, and isopropanol. We found that ac‐conductivity and dielectric constant are higher for the polymer electrolytes processed from N,N‐dimethylformamide. This observation revealed that the conductivity of the solid polymer electrolytes is dependent on the solvent used for processing and the dielectric constant of the film. The photo‐conversion efficiency of dye‐sensitized solar cells fabricated using the optimized polymer electrolytes was 3.0% under an illumination of 100 mW cm?2. The study suggests that N,N‐dimethylformamide is a good solvent for the polymer electrolyte processing due to higher ac‐conductivity beneficial for the electrochemical device applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42489.  相似文献   

4.
An in situ–generated tetrafunctional samarium enolate from the reduction of 1,1,1,1‐tetra(2‐bromoisobutyryloxymethyl)methane with divalent samarium complexes [Sm(PPh2)2 and SmI2] in tetrahydrofuran has proven to initiate the ring‐opening polymerization of ?‐caprolactone (CL) giving star‐shaped aliphatic polyesters. The polymerization proceeded with quantitative conversions at room temperature in 2 h and exhibited good controllability of the molecular weight of polymer. The resulting four‐armed poly(?‐caprolactone) (PCL) was fractionated, and the dilute‐solution properties of the fractions were studied in tetrahydrofuran and toluene at 30°C. The Mark–Houwink relations for these solvents were [η] = 2.73 × 10?2Mw0.74 and [η] = 1.97 × 10?2Mw0.75, respectively. In addition, the unperturbed dimensions of the star‐shaped PCL systems were also evaluated, and a significant solvent effect was observed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 175–182, 2006  相似文献   

5.
Static and dynamic light‐scattering techniques were used to study biodegradable thermoplastic poly(hydroxy ester ether) in N,N‐dimethylacetamide (DMAc). A weight‐average molecular weight MW = 6.4 × 104 g/mol, radius of gyration RG = 9.4 nm, second‐virial coefficient A2 = 1.05 × 10?3 mol mL/g2, translational diffusion coefficient D = 1.34 × 10?7 cm2/s, and hydrodynamic radius RH = 8.3 nm are reported. In addition, the effect of H2O on the polymer chain's conformation and architecture in a DMAc/H2O solution is evaluated. Results suggest that H2O makes the mixed solvent poorer as well as promotes polymer chain branching via intramolecular transesterification. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1737–1745, 2001  相似文献   

6.
Supramolecular crosslinked FeII‐terpyridine cellulose nanocrystals (Fe‐CTP) were prepared by surface modification of cellulose nanocrystals with 4′‐chloro‐2,2′:6′,2″‐terpyridine and subsequent reaction with Fe(II)SO4. The prepared complex was characterized using transmission electron microscopy (TEM), ultraviolet spectroscopy (UV), thermogravimetric analysis (TGA), and measuring its electrical properties at temperatures from 25 to 70°C. Use of Fe‐CTP at loadings from 1% to 10% (wt. ratio) in nanocomposites with polycaprolactone polymer was investigated; the nanocomposites were characterized regarding their electrical properties, which studied using broadband AC‐relaxation spectroscopy in the frequency range between 0.1 Hz and 1 MHz. The results were compared to that of PCL nanocomposites containing multiwalled carbon nanotubes (CNT). Variation in real and imaginary parts of permittivity has been explained on the basis of interfacial polarization of fillers in the polymer medium. The percolation limit of the conductive CNT and Fe‐CTP as studied by ac conductivity measurements has also been reported. Fe‐CTP showed conductivity values in the range of semiconductors. PCL/Fe‐CTP nanocomposites showed conductivity values from 1.98 × 10−11 to 3.76 × 10−6 while PCL/CNT nanocomposites showed conductivity values from 1.4 × 10−10 to 3.67 × 10−4 S/m for 1–10 wt% CNT content. POLYM. COMPOS., 37:2734–2743, 2016. © 2015 Society of Plastics Engineers  相似文献   

7.
N‐vinylcarbazole (NVC) was polymerized by 13X zeolite alone in melt (65°C) or in toluene (110°C) and a poly(N‐vinylcarbazole) (PNVC)‐13X composite was isolated. Composites of polypyrrole (PPY) and polyaniline(PANI) with 13X zeolite were prepared via polymerization of the respective monomers in the presence of dispersion of 13X zeolite in water (CuCl2 oxidant) and in CHCl3 (FeCl3 oxidant) at an ambient temperature. The composites were characterized by Fourier transform infrared analyses. Scanning electron microscopic analyses of various composites indicated the formation of lumpy aggregates of irregular sizes distinct from the morphology of unmodified 13X zeolite. X‐ray diffraction analysis revealed some typical differences between the various composites, depending upon the nature of the polymer incorporated. Thermogravimetric analyses revealed the stability order as: 13X‐zeolite > polymer‐13X‐zeolite > polymer. PNVC‐13X composite was essentially a nonconductor, while PPY‐13X and PANI‐13X composites showed direct current conductivity in the order of 10?4 S/cm in either system. However, the conductivity of PNVC‐ 13X composite could be improved to 10?5 and 10?6 S/cm by loading PPY and PANI, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 913–921, 2006  相似文献   

8.
A series of phenyleneethynylene copolymers with triphenylamine units as hole‐transporting moieties (TPA‐PPEs) were synthesized by the palladium‐catalyzed cross‐coupling polycondensation of diethynyltriphenylamines and selected dihalogen comonomers, for instance substituted benzene, thiophene, benzothiadiazole, or anthracene. Incorporation of the electron‐rich amino group into the PPE backbone does not interrupt the main chain conjugation. Furthermore, it has a decreasing effect on the oxidation potential, thus makes these polymers interesting as hole‐injection/hole‐transporting materials. The chemical structure of the new alternating copolymers was confirmed by 1H and 13C NMR spectroscopy and elemental analysis and gel‐permeation chromatography (GPC; THF, Mn ≈ 15,000–30,000 g/mol) was conducted. Furthermore, their optical properties were investigated by UV/vis spectroscopy. The TPA‐PPEs exhibit absorption maxima at around 400 nm (π‐π*), except anthracene containing copolymer 3f (λmax = 514 nm in THF) and benzothiadiazole containing one 3g (λmax = 503 nm in THF). The TPA copolymers have oxidation potentials about 1.1 V (Ag/AgCl). They are good photoconducting materials ( 3a : IPhoto = 4 × 10?10 A at 425 nm (400 V), 3g : IPhoto = 1.3 × 10?11 A at λmax = 500 nm (20 V)) and show emission after excitation at around 450 nm (560 nm 3f ). Their application in nonoptimized polymer solar cells (bulk heterojunction) led to power conversion efficiencies of around 1–1.8% after illumination with 100 mW/cm2 of AM1.5. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
To develop conjugated polymers with low bandgap, deep HOMO level, and good solubility, a new conjugated alternating copolymer PC‐DODTBT based on N‐9′‐heptadecanyl‐2,7‐carbazole and 5, 6‐bis(octyloxy)‐4,7‐di(thiophen‐2‐yl)benzothiadiazole was synthesized by Suzuki cross‐coupling polymerization reaction. The polymer reveals excellent solubility and thermal stability with the decomposition temperature (5% weight loss) of 327°C. The HOMO level of PC‐DODTBT is ‐5.11 eV, indicating that the polymer has relatively deep HOMO level. The hole mobility of PC‐DODTBT as deduced from SCLC method was found to be 2.03 × 10?4 cm2/Versus Polymer solar cells (PSCs) based on the blends of PC‐DODTBT and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) with a weight ratio of 1:2.5 were fabricated. Under AM 1.5 (AM, air mass), 100 mW/cm?2 illumination, the devices were found to exhibit an open‐circuit voltage (Voc) of 0.73 V, short‐circuit current density (Jsc) of 5.63 mA/cm?2, and a power conversion efficiency (PCE) of 1.44%. This photovoltaic performance indicates that the copolymer is promising for polymer solar cells applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Poly(o‐toluidine) (POT) is an electroactive polymer with poor mechanical and thermal characteristics. We examined the scope for improving such properties by making blends of POT with ethylene–propylene–diene rubber (EPDM). We prepared POT–EPDM blends containing different weight fractions of POT by intimately mixing known volumes of separate solutions of the two polymers (POT in THF and EPDM in toluene). Films of EPDM and POT–EPDM blends in solution were obtained by spreading, solvent evaporation, and film casting techniques. POT, EPDM, and their blends were characterized in solution by ultraviolet‐visible spectroscopy, and the respective dried samples were analyzed by Fourier transform infrared spectroscopy and thermogravimetry. The polymer samples were further analyzed morphologically by scanning electron microscopy, and their tensile strengths were also evaluated. Spectroscopic and thermal studies of the blends indicated some sort of interaction between the two constituent polymers. The direct current electrical conductivity of the blends in increasing order of POT loading (12.5–100%) was in the range 9.9 × 10?5 to 11.6 × 10?2 S cm?1. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2550–2555, 2003  相似文献   

11.
Poly[aniline‐coN‐(2‐hydroxyethyl) aniline] was synthesized in an aqueous hydrochloric acid medium with a determined feed ratio by chemical oxidative polymerization. This polymer was used as a functional conducting polymer intermediate because of its side‐group reactivity. To synthesize the alkyl‐substituted copolymer, the initial copolymer was reacted with NaH to obtain the N‐ and O‐anionic copolymer after the reaction with octadecyl bromide to prepare the octadecyl‐substituted polymer. The microstructure of the obtained polymers was characterized by Fourier transform infrared spectroscopy, 1H‐NMR, and X‐ray diffraction. The thermal behavior of the polymers was investigated by thermogravimetric analysis and differential scanning calorimetry. The morphology of obtained copolymers was studied by scanning electron microscopy. The cyclic voltammetry investigation showed the electroactivity of poly [aniline‐coN‐(2‐hydroxyethyl) aniline] and N and O‐alkylated poly[aniline‐coN‐(2‐hydroxyethyl) aniline]. The conductivities of the polymers were 5 × 10?5 S/cm for poly[aniline‐coN‐(2‐hydroxyethyl) aniline] and 5 ×10?7 S/cm for the octadecyl‐substituted copolymer. The conductivity measurements were performed with a four‐point probe method. The solubility of the initial copolymer in common organic solvents such as N‐methyl‐2‐pyrrolidone and dimethylformamide was greater than polyaniline. The alkylated copolymer was mainly soluble in nonpolar solvents such as n‐hexane and cyclohexane. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
BACKGROUND: In recent years, many fluorescent chemosensors with various macromolecular structures have been prepared for the detection of protons or metal cations in the environment. Most of this research is focused on polymer sensors with fluorescent recognition sites in the main chain. In this case, the fluorescent recognition sites are covalently bonded to the polymer chain, and thus the polymer shows photophysical properties as a chemosensor for protons and metal ions. RESULTS: An acrylic monomer bearing coumarin moieties, 7‐hydroxy‐4‐methyl‐8‐(4′‐acryloylpiperazin‐1′‐yl)methylcoumarin, was synthesized. This was then copolymerized with N‐vinylpyrrolidone to obtain a blue fluorescent material. The fluorescent copolymer has good solubility in aqueous solution. Its main photophysical properties were determined in relation to its use as a sensor for protons and metal cations. It is an efficient ‘off‐on’ switcher for pH between 3.02 and 12.08. Additionally, the polymer sensor is selective to Ni2+ ions, with the increase in the fluorescence intensity depending on Ni2+ ion concentrations in the range 0.33 × 10?5–7.67 × 10?5 mol L?1. CONCLUSION: The results suggest that this copolymer may offer potential as a reusable polymer sensor for protons and Ni2+ ions in aqueous solution. Copyright © 2009 Society of Chemical Industry  相似文献   

13.
Poly{[2,7‐(9,9‐bis‐(1‐(2‐(2‐methoxyethoxy)ethoxy)ethyl)‐fluorene)]‐alt‐[5,5‐(4,7‐di‐2′‐thienyl‐2,1,3‐benzothiadiazole)]} (EO‐PF‐DTBT) was synthesized by Suzuki coupling reaction. The polymer is soluble in common organic solvent, such as toluene, THF, and chloroform, and it also shows solubility in polar solvent, such as cyclopentanone. Solar cells based on EO‐PF‐DTBT and PC61BM show maximum power conversion efficiency of 2.65% with an open circuit voltage (VOC) of 0.86 V, a short circuit current density (JSC) of 6.10 mA/cm2, and a fill factor of 51% under AM 1.5G illumination at 100 mW/cm2, which is the best results for fluorene and 4,7‐di‐2‐thienyl‐2,1,3‐benzothiadiazole copolymers and PC61BM blend. The 1,8‐diiodooctane can work well to reduce the over‐aggregated phase structure in polymer solar cells. Our results suggest that the introducing high hydrophilic side chain into conjugated polymer donor materials can tune the aggregation structure and improve the solar cells performances. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40478.  相似文献   

14.
3,4‐Di‐(2′‐hydroxyethoxy)‐4′‐nitrostilbene was prepared and condensed with terephthaloyl chloride, adipoyl chloride, and sebacoyl chloride to yield novel Y‐type polyesters containing NLO‐chromophore dioxynitrostilbenyl groups, which constituted parts of the polymer backbone. Polymers were found soluble in common organic solvents such as acetone and N,N‐dimethylformamide. They showed thermal stability up to 300 °C in thermogravimetric analysis with glass‐transition temperatures obtained from differential scanning calorimetry in the range 110–152 °C. The second harmonic generation (SHG) coefficients (d33) of poled polymer films at a 1064 cm?1 fundamental wavelength were around 3.51 × 10?8 esu. The dipole alignment exhibited high thermal stability even at 10 °C higher than the glass‐transition temperature, and there was no SHG decay below 120 °C for one of these polymers due to the partial main‐chain character of polymer structure, which was acceptable for NLO device applications. Copyright © 2005 Society of Chemical Industry  相似文献   

15.
The oxidative polycondensation reaction conditions of 2‐(2‐hydroxybenzylideneamino)‐6‐phenyl‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carbonitrile were examined. The magnitude of the reflectance of the polymer decreases sharply with increasing of wavelength up to 524 nm, then reflectance of the polymer increases slowly with increasing of wavelength. The refractive index values of the polymer vary from 1.474 to 2.350. The Ep and Ed values of the polymer were found to be 4.56 and 7.068 eV, respectively. Absorption coefficient K of the polymer is of the order 817.062–1434.77 m?1. Angle values of incidence and refraction of the polymer vary from 57.36 to 66.95° and from 23.05 to 32.65°, respectively. The film‐phase thickness of the polymer increases with increasing photon energy. The thickness, d, of the polymer was of the order 439.3–4184.7 Å for 190 and 1100 nm, respectively. The real part of dielectric constant of the polymer decreases slowly with increasing of frequency up to about 600 THz, then the real part of dielectric constant of the polymer increases sharply with increasing of frequency. The real and imaginary parts of dielectric constant of the polymer vary from 2.17 to 5.52 and from 5.81 × 10?5 to 3.58 × 10?4, respectively. Finally, polymer was tested for antibacterial activities against some bacteria. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

16.
We prepared a semi‐IPN (interpenetrating network)‐type solid polymer electrolyte (SPE) using poly (ethylene glycol)dimethacrylate (PEGDMA) as a polymer matrix containing a monocomb‐type poly(siloxane‐g‐allyl cyanide) and poly(ethylene glycol)dimethylether (PEGDME) for the lithium secondary battery. The poly(siloxane‐g‐allyl cyanide)s were prepared by a hydrosilation reaction of poly (methyl hydrosiloxane) with allyl cyanide and characterized by 1H NMR and FTIR. The semi‐IPN‐type electrolyte was prepared by thermal curing, and conductivities of samples were measured by impedance spectroscopy using an indium tin oxide (ITO) electrode. The ionic conductivity of the semi‐IPN‐polymer electrolyte was about 1.05 × 10?5 S cm?1 with 60 wt % of the poly(siloxane‐g‐allyl cyanide) and 6.96 × 10?4 S cm?1 with 50 wt % of the PEGDME and 10 wt % of the poly(siloxane‐g‐allyl cyanide) at 30°C. The SEM morphology of the cross section of the semi‐IPN‐polymer electrolyte film was changed from discontinuous network to continuous network as increasing the PEGDME content and decreasing the poly(siloxane‐g‐allyl cyanide) content. The mechanical stability was also enhanced when increasing the PEGDME content. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
The optimum conditions for grafting N‐vinyl‐2‐pyrrolidone onto dextran initiated by a peroxydiphosphate/thiourea redox system were determined through the variation of the concentrations of N‐vinyl‐2‐pyrrolidone, hydrogen ion, potassium peroxydiphosphate, thiourea, and dextran along with the time and temperature. The grafting ratio increased as the concentration of N‐vinyl‐2‐pyrrolidone increased and reached the maximum value at 24 × 10?2 mol/dm3. Similarly, when the concentration of hydrogen ion increased, the grafting parameters increased from 3 × 10?3 to 5 × 10?3 mol/dm3 and attained the maximum value at 5 × 10?3 mol/dm3. The grafting ratio, add‐on, and efficiency increased continuously with the concentration of peroxydiphosphate increasing from 0.8 × 10?2 to 2.4 × 10?2 mol/dm3. When the concentration of thiourea increased from 0.4 × 10?2 to 2.0 × 10?2 mol/dm3, the grafting ratio attained the maximum value at 1.2 × 10?2 mol/dm3. The grafting parameters decreased continuously as the concentration of dextran increased from 0.6 to 1.4 g/dm3. An attempt was made to study some physicochemical properties in terms of metal‐ion sorption, swelling, and flocculation. Dextran‐gN‐vinyl‐2‐pyrrolidone was characterized with infrared spectroscopy and thermogravimetric analysis. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
A light‐emitting partially conjugated hyperbranched polymer (2,5‐dimethoxy‐substituted hyperbranched poly(p‐phenylene vinylene), MOHPV) based on rigid fluorescent conjugated segments, 2,5‐dimethoxy‐substituted distyrylbenzene (a derivative of oligo‐poly(p‐phenylene vinylene)), and flexible non‐conjugated spacers, trioxymethylpropane, was synthesized via an A2 + B3 approach. The weight‐average molecular weight was 2.48 × 104 g mol?1. The introduction of two methoxy groups into central rings of the oligo‐poly(p‐phenylene vinylene) imparted to MOHPV better solubility in common organic solvents and processability than its analogues reported in our previous work, especially the fully conjugated hyperbranched polymers. The effect of the molar ratio of monomer A2 to monomer B3 on the molecular weight and molecular weight distribution was investigated. A single‐layer light‐emitting diode was fabricated employing MOHPV as an emitter. A double‐layer light‐emitting diode was also fabricated by doping an electron transport material, 2‐(4‐biphenylyl)‐5‐phenyl‐1,3,4‐oxadiazole, into the emitting layer and inserting a thin layer of tri(8‐hydroxyquinoline)aluminium as electron‐transporting/hole‐blocking layer. A maximum luminance of 1500 cd m?2 at 12 V and a maximum electroluminescence efficiency of 1.38 cd A?1 at 14 mA cm?3, which are approximately 43.5 and 12.9 times greater, respectively, than those of the single‐layer device, were achieved. The synthetic simplicity, excellent solubility and solution processability, and less of a propensity to aggregation make MOHPV a novel type of emitter for polymer light‐emitting displays. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
Two oxetane‐derived monomers 3‐(2‐cyanoethoxy)methyl‐ and 3‐(methoxy(triethylenoxy)) methyl‐3′‐methyloxetane were prepared from the reaction of 3‐methyl‐3′‐hydroxymethyloxetane with acrylonitrile and triethylene glycol monomethyl ether, respectively. Their homo‐ and copolyethers were synthesized with BF3· Et2O/1,4‐butanediol and trifluoromethane sulfonic acid as initiator through cationic ring‐opening polymerization. The structure of the polymers was characterized by FTIR and1H NMR. The ratio of two repeating units incorporated into the copolymers is well consistent with the feed ratio. Regarding glass transition temperature (Tg), the DSC data imply that the resulting copolymers have a lower Tg than pure poly(ethylene oxide). Moreover, the TGA measurements reveal that they possess in general a high heat decomposition temperature. The ion conductivity of a sample (P‐AN 20) is 1.07 × 10?5 S cm?1 at room temperature and 2.79 × 10?4 S cm?1 at 80 °C, thus presenting the potential to meet the practical requirement of lithium ion batteries for polymer electrolytes. Copyright © 2005 Society of Chemical Industry  相似文献   

20.
Thermoelectric modules can be used for thermal energy harvesting. Common rigid thermoelectric stacks usually contain heavy metal alloys such as Bi2Te3. In order to substitute conventional materials and to reduce manufacturing costs, nontoxic, inexpensive and abundant materials using low‐cost processes are first choice. This study deals with polymer composites consisting of a polysiloxane matrix filled with thermoelectric Sn0.85Sb0.15O2 particles in micrometer scale. Thin composite sheets have been prepared by doctor blade technique and the Seebeck coefficient, the electrical and thermal conductivity, and the porosity were measured. Platelet‐type particles, consisting of Sn0.85Sb0.15O2‐coated insulating mica substrate and globular Sn0.85Sb0.15O2 particles have been varied in size, coating thickness and were mixed with each other in different ratios. The filler content was varied in order to maximize the figure of merit, ZT, to 1.9 × 10?5 ± 4 × 10?6. Owing to their low raw material costs and the high degree of design freedom of polymer composites, one may use these materials in thermoelectric generators for remote low‐power demanding applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40038.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号