首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electrospinning, self‐assembly, and phase separation are some of the techniques available for the synthesis of nanofibers. Of these techniques, electrospinning is a simple and versatile method for generating ultrafine fibers from a wide variety of polymers and polymer blends. Poly L ‐lactide (PLLA) and Poly (vinyl alcohol) (PVA) are biodegradable and biocompatible polymers which are mainly used for biomedical applications. Nanofibrous membranes with 1:9 ratio of PLLA to PVA (8 to 10 wt % and 10 wt %) were fabricated by electrospinning. The percentage porosity and contact angle of PVA in the PLLA‐PVA nanofibrous mat increased from 80 to 83% and from 39 ± 3° to 55 ± 3°, respectively. The water uptake percentage of PVA nanofibers decreased from 190 to 125% on the addition of PLLA to PVA in the PLLA‐PVA nanofibrous mat. The nanofiber morphology, structure and crystallinity were studied by Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT‐IR), and X‐ray diffraction (XRD), respectively. The thermal properties were studied by thermogravimetric analysis (TGA) and differential scanning calorimetery (DSC). The biocompatibility studies of PLLA‐PVA blend were performed using fibroblast cells (NIH 3T3) by MTT assay method. The release of Curcumin (0.5, 1.0, and 1.5 wt %) from PLLA‐PVA blend was found to be ~ 78, 80, and 80%, respectively, in 4 days. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
In this study, electrospun biocompatible nanofibers with random orientation were prepared by physically blending poly(vinyl alcohol)‐stilbazol quaternized (PVA‐SbQ) with zein in acetic acid solution for wound healing. PVA‐SbQ was used as the foundation polymer as well as crosslinking agent, blended with zein to achieve desirable properties such as improved tensile strength, surface wettability, and in vitro degradable properties. Moreover, vaccarin drug was incorporated in situ into electrospun nanofibrous membranes for cell viability and cell attachment. The addition of vaccarin showed great effects on the morphology of nanofiber and enhanced cell viability and proliferation in comparison with composite nanofibers without drug. The presence of PVA‐SbQ, zein, and vaccarin drug in the nanofibrous membranes exhibited good compatibility, hydrophilicity, and biocompatibility and created a moist environment to have potential application for wound healing. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42565.  相似文献   

3.
For efficient and green separation of surfactant‐stabilized water‐in‐oil (W/O) emulsions, under‐oil superhydrophilic poly(vinyl alcohol) (PVA)/silica hybrid nanofibrous aerogel is fabricated by freeze‐drying the dispersion of shortened PVA/tetraethyl orthosilicate composite electrospun nanofibers in t‐butanol, followed by heat‐treatment. Its hierarchical porous structure, observed by scanning electron microscope, consists of major and minor pores with an average diameter of 15.9 and 1.0 µm, respectively. The silica‐based crosslinking structure inside the nanofibers and the chemical linkage between them, evidenced by infrared spectroscopy, endows the nanofibrous aerogel with desirable stability in water and compression recoverability. When it is used for gravity‐driven separation of Span80 stabilized water‐in‐n‐hexane emulsion, the flux is 2083 L m?2 h?1 and the purity of the separated n‐hexane reaches 99.997%, corresponding to the separation efficiency of 99.79%. The nanofibrous aerogel after use is readily recycled by rinsing and freeze‐drying, without using any organic solvent, as it possesses under‐oil superhydrophilicity and prominent oil antifouling property. Differing from the previously reported separation materials, PVA/silica hybrid nanofibrous aerogel simultaneously acts as gravity‐driven filtration material and adsorption material to both absorb their coalesced water droplets and allow the separated oil to penetrate in the separation process.  相似文献   

4.
Optimization of the mechanical properties is necessary in the applications of electrospun nanofibrous matrices. In this work, mechanical reinforcement of electrospun nanofiber membranes of water‐soluble polymer by the incorporation of commercial nanodiamonds (NDs) was studied. Through an ND/poly(vinyl alcohol) (ND/PVA) model system, it is demonstrated that 155% improvement of Young's modulus, 89% increase in tensile strength, and 336% elevation in energy to break are achieved by the addition of only 2 wt% ND. Fourier transform infrared spectroscopy results suggest the existence of molecular interactions between NDs and PVA matrix, which contributes to the effective load transfer from the polymer matrix to the fillers. However, higher level of ND addition (>2 wt%) aggravates the agglomeration of nanofillers in PVA matrix and offsets the reinforcing effect, as ND agglomerates may act as flaws in composite nanofibers. Furthermore, NDs have optimizing effect on the morphology of ND/PVA nanofibers through increasing the conductivity of the electrospinning solution. Therefore, ND nanofillers possess the potential to improve the mechanical performance of water‐soluble polymer‐based nanofiber membranes. POLYM. COMPOS., 34:1735–1744, 2013. © 2013 Society of Plastics Engineers  相似文献   

5.
Superabsorbent hydrogels were prepared from chitin dissolved in lithium chloride and N‐methyl‐2‐pyrrolidinone by esterification crosslinking with 1,2,3,4‐butanetetracarboxylic dianhydride (BTCA). The absorbency of the chitin hydrogel was strongly dependent on the ratio of BTCA feed to chitin. The hydrogel prepared at the feed ratio of 5 showed the highest absorbency (345 g/g‐polymer), and the hydrogel was composed of 0.65 molecules of BTCA per monomer unit of chitin. The hydrogels exhibited good biodegradability by chitinase with a maximum degradation of 91% within 7 days. This method for obtaining the chitin hydrogel was also applicable to cellulose and chitin mixtures, and 1 : 1 cellulose/chitin hybrid hydrogels could be obtained by the esterification crosslinking of a mixture with a 1 : 1 molar ratio of cellulose and chitin. The optimal BTCA feed ratio of 5 resulted in the cellulose/chitin hydrogel with the highest water absorbency (329 g/g‐polymer), and the hydrogel contained 0.65 molecules of BTCA per polysaccharide monomer unit. In addition, the hybrid hydrogels were degraded by cellulase as well as chitinase. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
Hydrogel-based nanofibers or vice versa are a relatively new class of nanomaterials, in which hydrogels are structured in nanofibrous form. Structure and size of the material directly governs its functionality, therefore, in hydrogel science, the nanofibrous form of hydrogels enables its usage in targeted applications. Hydrogel nanofiber system combines the desirable properties of both hydrogel and nanofiber like flexibility, soft consistency, elasticity, and biocompatibility due to high water content, large surface area to volume ratio, low density, small pore size and interconnected pores, high stiffness, tensile strength, and surface functionality. Swelling behavior is a critical property of hydrogels that is significantly increased in hydrogel nanofibers due to their small size. Electrospinning is the most popular method to fabricate “hydrogel nanofibers,” while other processes like self-assembly, solution blowing and template synthesis also exist. Merging the characteristics of both hydrogels and nanofibers in one system allows applications in drug delivery, tissue engineering, actuation, wound dressing, photoluminescence, light-addressable potentiometric sensor (LAPS), waterproof breathable membranes, and enzymatic immobilization. Treatment of wastewater, detection, and adsorption of metal ions are also emerging applications. In this review paper, we intend to summarize in detail about electrospun “hydrogel nanofiber” in relation to its synthesis, properties, and applications.  相似文献   

7.
A novel physicochemical crosslinked nanocomposite hydrogel based on polyvinyl alcohol (PVA) and natural Na‐montmorillonite (Na+‐MMT) was synthesized by chemical crosslinking of nanocomposite hydrogel followed by a freezing‐thawing process. The effects of physical crosslinking, as well as physicochemical crosslinking, on the structure, morphology, and properties (thermal, mechanical, swelling, and deswelling) of nanocomposite hydrogels were investigated and compared with each other. The structure and morphology of nanocomposites were studied by Fourier transform infrared, X‐ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy techniques. The thermal and mechanical properties of nanocomposites that were affected by physical and physicochemical crosslinking were evaluated by thermogravimetric analysis, differential scanning calorimeter, dynamic mechanical analysis, hardness test, and Water vapor transmission rate (WVTR) experiments. The results showed that the physicochemical crosslinking of a PVA nanocomposite leads to a reduction in crystallinity and melting temperature, as well as an increase in the Hardness and WVTR compared to a physically crosslinked PVA nanocomposite hydrogel. The swelling and deswelling experiments were performed using a gravimetric method, and it was shown that controlled crosslinking of PVA nanocomposite hydrogel with glutaraldehyde causes the swelling ratio to increase and the cumulative amount of water loss to decrease. The swelling (sorption) and deswelling (desorption) kinetics data for physically and physicochemical crosslinking of nanocomposite hydrogels were fitted with a fickian model. It is concluded that through control crosslinking of PVA nanocomposite can lead to a hydrogel with higher swelling capacity than that is in conventional PVA nanocomposite hydrogel. POLYM. COMPOS., 37:897–906, 2016. © 2014 Society of Plastics Engineers  相似文献   

8.
以丁烷四羧酸(BTCA)为交联剂对胶原蛋白(Coll)/聚乙烯醇(PVA)复合体系进行化学交联处理;利用红外光谱分析了交联前后体系的化学变化;根据常见动力学机理函数,结合凝胶含量(α)研究复合体系的交联动力学。结果表明:BTCA对Coll/PVA体系有明显的交联作用,交联反应主要以酯化反应和酰胺化反应为主;BTCA/PVA和BTCA/Coll的表观凝胶反应活化能(E)分别为100.29,77.42 kJ/mol,表明BTCA较易与Coll反应;BTCA/Coll/PVA复合体系的最佳动力学函数G(α)为[-ln(1-α)]2/5,E为40.88 kJ/mol,比Coll/PVA复合体系的E(86.99 kJ/mol)明显减小,说明BTCA的加入降低了体系的E,有利于促进交联反应,可提高蛋白存留率。  相似文献   

9.
Poly(vinyl alcohol) (PVA) nanofibers crosslinked with blocked isocyanate prepolymer (BIP) were successfully prepared using the electrospinning process and subsequent thermal treatment. Fourier transform infrared spectroscopy and solid‐state 13C NMR spectroscopy demonstrated that chemical crosslinks between the hydroxyl group of PVA and the isocyanate group of BIP were formed. Thermogravimetric analysis and differential scanning calorimetry results indicated that when the BIP content was increased, the thermal stability of PVA/BIP nanofibers increased, and the crystallinity of PVA decreased. Field emission scanning electron microscopy was used to measure the average diameter (200–300 nm) of the electrospun PVA/BIP nanofibers. The water contact angles were 10.2° and 113° for the pristine PVA nanofibers and PVA nanofibers crosslinked with 8 wt% BIP, respectively. The tensile strength of the crosslinked PVA nanofibers was 53.7 MPa, which was seven times higher than that of pristine PVA. The improved tensile strength and water resistance of the crosslinked PVA/BIP nanofibers were due to a combination of increased crosslinking density and decrease in the number of hydroxyl groups on the surface of the PVA/BIP nanofibers. Copyright © 2010 Society of Chemical Industry  相似文献   

10.
A series of nanofibrous scaffolds were prepared by electrospinning of poly(vinyl alcohol) (PVA)/gelatin aqueous solution. PVA and gelatin was dissolved in pure water and blended in full range, then being electrospun to prepared nanofibers, followed by being crosslinked with glutaraldehyde vapor and heat treatment to form nanofibrous scaffold. Field emission scanning electron microscope (FESEM) images of the nanofibers manifested that the fiber average diameters decreased from 290 to 90 nm with the increasing of gelatin. In vitro degradation rates of the nanofibers were also correlated with the composition and physical properties of electrospinning solutions. Cytocompatibility of the scaffolds was evaluated by cells morphology and MTT assay. The FESEM images revealed that NIH 3T3 fibroblasts spread and elongated actively on the scaffolds with spindle‐like and star‐type shape. The results of cell attachment and proliferation on the nanofibrous scaffolds suggested that the cytotoxicity of all samples are grade 1 or grade 0, indicating that the material had sound biosafety as biomaterials. Compared with pure PVA and gelatin scaffolds, the hybrid ones possess improved biocompatibility and controllability. These results indicate that the PVA/gelatin nanofibrous have potential as skin scaffolds or wound dressing. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
A novel full‐polysaccharide hydrogel was prepared by crosslinking of chitosan with periodate‐oxidized sucrose. A tetraaldehyde molecule is synthesized via periodate oxidation of sucrose and then applied as a crosslinking agent to form a new hydrogel network. A mechanism for the superabsorbent hydrogel formation via reductive N‐alkylation was also suggested. The structure of the hydrogel was confirmed by FTIR spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). It is shown that crosslinking of chitosan can improve its thermal stability. The effects of crosslinker concentration, pH, and inorganic salt on the swelling behavior of the hydrogel were studied. The results indicate that the hydrogel has good pH sensitivity and pH reversible response. The smart hydrogels may have potential applications in the controlled delivery of bioactive agents and for wound‐dressing application © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
2‐Amino‐2‐methyl‐1‐propanol (AMP) was coated onto cotton fabric with 1,2,3,4‐butanetetracarboxylic acid (BTCA) as a crosslinking agent to simultaneously impart antimicrobial and durable‐press functionalities. The coatings were characterized and confirmed by attenuated total reflectance–IR and thermogravimetric analysis. The coated fabrics were rendered biocidal upon exposure to dilute household bleach, and the chlorinated swatches exhibited about 6 log reductions of Escherichia coli O157:H7 and Staphylococcus aureus within 5 min of contact time. A concentration of 1.5 wt % AMP was sufficient to produce this biocidal efficacy. Increasing the BTCA content of the coating improved the wrinkle recovery angle. The coatings were very stable toward repeated laundering, and they exhibited sufficient halogen storage stabilities for industrial applications. A photolytic decomposition was observed when the coatings were exposed to UVA light. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
Tetracycline hydrochloride loaded poly(vinyl alcohol)/soybean protein isolate/zirconium (Tet–PVA/SPI/ZrO2) nanofibrous membranes were fabricated via an electrospinning technique. The average diameter of the PVA/soybean protein isolate (SPI)/ZrO2 nanofibers used as drug carriers increased with increasing ZrO2 content, and the nanofibers were uneven and tended to stick together when the ZrO2 content was above 15 wt %. The Tet–PVA/SPI/ZrO2 nanofibers were similar in morphology when the loading dosage of the model drug tetracycline hydrochloride was below 6 wt %. The PVA, SPI, and ZrO2 units were linked by hydrogen bonds in the hybrid networks, and the addition of ZrO2 improved the thermostability of the polymer matrix. The Tet–PVA/SPI/ZrO2 nanofibrous membranes exhibited good controlled drug‐release properties and antimicrobial activity against Staphylococcus aureus. The results of this study suggest that those nanofibrous membranes were suitable for drug delivery and wound dressing. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40903.  相似文献   

14.
This study focused on the preparation of electrospun cross‐linked double‐network (DN) of agarose/polyacrylamide (PAAm) nanofibers. The agarose formed the first‐network that was physical‐linked by the agar helix bundles. After UV‐irradiation, the chemically crosslinked PAAm was formed as the second network. The resulting cross‐linked DN agarose/PAAm nanofibers were characterized by scanning electron microscopy (SEM), contact angle, attenuated total reflectance‐Fourier transform infrared spectroscopy (ATR‐FT‐IR), thermogravimetric analysis (TGA), and tensile test. SEM analysis shows the agarose/PAAM nanofibers present with the thickness of 187 nm. Agarose/PAAm nanofibers were showing FT‐IR spectral peaks at ~1660, 1590, and 1070 cm?1 indicating the presence of both agarose and polyacrylamide in the crosslinked DN Agarose/PAAm nanofiber sheet, it suggests the strong interaction and good compatibility between the two components. Agarose/PAAm nanofiber sheet was showing thermal stability close to the pure polyacrylamide. From the tensile test study, agarose/PAAm strength improved by 66.66% compared to the pure agarose. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42914.  相似文献   

15.
A novel hydrogel was prepared from industrial waste to form a green polymer with a higher swelling capacity. This hydrogel was synthesized by two methods for chemical crosslinking, namely crosslinking by radical polymerization and crosslinking by addition reaction. In crosslinking by radical polymerization, graft copolymerization of poly(vinyl alcohol) (PVA) and polyacrylamide (PAAm) was carried out using ceric ammonium sulfate in presence of N,N',‐methylenebisacrylamide, and then mixed with the black liquor resulting from alkaline pulping of rice straw. While, in crosslinking by addition reaction, the same above reagents were mixed with the black liquor in absence of the initiator. The black liquor is an industrial waste resulting from the pulping method and consists of dissolved lignin and carbohydrates. The black liquor causes environmental water pollution due to its dumping into the sea. The formed hydrogels were characterized using FT‐IR spectroscopy and scanning electron microscopy (SEM). It was noted that the hydrogel prepared by radical polymerization showed high swelling capacity, 60.00%, compared to that prepared by the addition reaction, 27.27%. The hydrogels formed were used also to study the influence of sodium chloride on the absorption capacity at room temperature and swelling ratios at different temperatures and pHs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
In the field of tissue engineering there is always a need for new engineered polymeric biomaterials which have ideal properties and functional customization. Unfortunately the demands for many biomedical applications need a set of properties that no polymers can fulfill. One method to satisfy these demands and providing desirable new biomaterials is by mixing two or more polymers. In this work, random nanofibrous blends of poly (ε‐caprolactone) (PCL) and polyglycolic acid (PGA) with various PCL/PGA compositions (100/0, 80/20, 65/35, 50/50, and 0/100) were fabricated by electrospinning method and characterized for soft‐tissue engineering applications. Physical, chemical, thermal, and mechanical properties of PCL/PGA blend nanofibers were measured by scanning electron microscopy (SEM), porosimetry, contact angle measurement, water uptake, attenuated total reflectance Fourier transform‐infrared spectroscopy (ATR‐FT‐IR), X‐ray diffraction (XRD), differential scanning calorimetric (DSC), dynamic mechanical thermal analysis (DMTA), and tensile measurements. Morphological characterization showed that the addition of PGA to PCL results in an increase in the average diameter of the nanofibers. According to these results, when the amount of PGA in the blend solution increased, the hydrophilicity and water uptake of the nanofibrous scaffolds increased concurrently, approaching those of PGA nanofibers. Differential scanning calorimetric studies showed that the PCL and PGA were miscible in the nanofibrous structure and the mechanical characterization under dry conditions showed that increasing PGA content results in a tremendous increase in the mechanical properties. In conclusion, the random nanofibrous PCL/PGA scaffold used in this study constitutes a promising material for soft‐tissue engineering. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
Tunable hydrogel that contained well‐defined poly(vinyl alcohol) (PVA), labile lactate groups, and hydrophilic poly(ethylene glycol) (PEG) segments was prepared through a combination of reversible addition‐fragmentation chain transfer (RAFT) polymerization and esterification reaction. A diol was prepared via the esterification between lactic acid (LA) and PEG. Then the diol was allowed to react with maleic anhydride to produce a diacid. Meanwhile, well‐defined PVA was synthesized by the alcoholysis of poly(vinyl acetate) (PVAc) obtained by RAFT polymerization of vinyl acetate. The hydrogels with tailor‐made structure were generated by crosslinking PVA with LA‐based diacid. The structures and properties of LA‐based intermediates and the hydrogels were characterized with Fourier transform infrared spectroscopy, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis. Both LA‐based diol and diacid were semicrystalline and water‐soluble, their melting temperature and glass transition temperature were 52 and ?51, 54 and ?41°C, respectively. The polydispersity indexes of the precursor of PVA samples were within the range of 1.03–1.10. It was found that the thermal stability of hydrogel was higher than that of LA‐based diacid. Both the swelling and release properties of the hydrogels depend on the feeding ratio of PVA/LEM and the chain length of PVA, which reflected that the structure and properties of the hydrogels were controllable. POLYM. ENG. SCI., 54:1366–1371, 2014. © 2013 Society of Plastics Engineers  相似文献   

18.
BACKGROUND: Carboxymethylcellulose (CMC) and poly(vinyl alcohol) (PVA) are biocompatible, and their complex hydrogel shows pH responsiveness. Thus, they are chosen as starting materials to prepare physically dual‐crosslinked Fe‐CMC/PVA microparticles with improved properties. RESULTS: Fe‐CMC/PVA double‐network microparticles were obtained via a facile process under mild conditions. Sodium carboxymethylcellulose was crosslinked with ferric ions to form particles that contained aqueous PVA solution in an emulsion system. The hydrogel particles were then subjected to a freezing–thawing cycle to achieve further crosslinking; the size of the particles formed was in the range 0.2–1.2 µm. The microparticles were capable of maintaining the stability of proteins such as hemoglobin in an acidic environment and exhibited pH‐responsive release behavior. CONCLUSION: The pH responsivity of the Fe‐CMC/PVA physical double‐network microparticles is fast, which is helpful for effectively protecting a loaded bioactive substance. Thus, they may be potential candidates for pH‐sensitive applications. Copyright © 2008 Society of Chemical Industry  相似文献   

19.
An ideal hydrogel with excellent adhesive performance has drawn much attention in research and applications. In this paper, a photo‐crosslinked polyvinyl alcohol bearing styrylpyridinium group/cellulose nanocrystals (PVA‐SbQ/CNC) composite hydrogel is designed through photo‐crosslinking technology for preventing the physical crosslinking of polyvinyl alcohol to maintain enough hydroxy groups in the hydrogel. Thus, the hydrogel exhibits excellent adhesive behavior not only for various solid substrates (plastics, rubbers, glasses, metals, and woods) but also muscle and fat. In addition, the formation mechanism, the swelling behavior, and mechanical strength are also investigated. Also, these results show that photo‐crosslinked PVA‐SbQ/CNC hydrogel possesses high swelling rate, super stretchability, and high toughness. Moreover, adhesive, mechanical, and swelling properties of PVA‐SbQ/CNC hydrogels can be changed with the increase of total incident light intensity. It is anticipated that the photo‐crosslinked PVA‐SbQ/CNC hydrogel would play a significant role in the applications of wound dressing, medical electrodes, tissue adhesives, portable equipment, and super absorbent materials. In this sense, the simple photo‐crosslinking strategy would provide new ideas for designing soft and adhesive materials through controlling the balance of cohesion and adhesion.  相似文献   

20.
Polyvinyl alcohol (PVA) hydrogel is a promising material possessing good chemical stability, high water absorption, excellent biocompatibility and biological aging resistant. However, the poor mechanical performance of PVA hydrogel limits its applications. Here we report the utilization of one-dimensional (1D) BN nanofibers (BNNFs) as nanofillers into PVA matrix to prepare a novel kind of BNNFs/PVA composite hydrogel via a cyclic freezing and thawing method. For comparison, the composite hydrogels using spherical BN nanoparticles i.e. BN nanospheres (BNNSs) as fillers were also prepared. The mechanical properties, thermal stabilities and swelling behaviors of the composite hydrogels were investigated in detail. Our study indicates that the mechanical properties of the hydrogels can be improved by adding of BNNFs. After loading of BNNFs into PVA with content of 0.5?wt%, the compressive strength of the composite hydrogel increases by 252% compared with that of pure PVA hydrogel. The tensile performance of BNNFs/PVA composite hydrogels has also been improved. Impressive 87.8% increases in tensile strengths can be obtained with 1?wt% BNNFs added. In addition, with the increase of BNNFs content, the thermal stability and the swelling ratio of hydrogels are increased gradually. The swelling ratio of hydrogel increases by 56.3% with only 1?wt% BNNFs added. In comparison, the improvement effects of the BNNS fillers on the mechanical strengths and swelling ratios are much weaker. The enhanced effects of BNNFs can be ascribed to the strong hydrogen bond interaction between BNNFs and PVA. The high aspect ratios of the nanofibers should also be took into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号