首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A thermoplastic hydrogel based on a pentablock copolymer composed of poly(γ‐benzyl L ‐glutamate) (PBLG) and poloxamer was synthesized by polymerization of BLG N‐carboxyanhydride, which was initiated by diamine‐terminated groups located at the ends of poly(ethylene oxide) (PEO) chains of the poloxamer, to attain a new pH‐ and temperature‐sensitive hydrogel for drug delivery systems. Circular dichroism measurements in solution and IR measurements in the solid state revealed that the polypeptide block existed in the α‐helical conformation, as in the PBLG homopolymer. The intensity of the wide‐angle X‐ray diffraction patterns of the polymers depended on the poloxamer content in the copolymer and showed basically similar reflections to the PBLG homopolymer. The melting temperature (Tm) of the poloxamer in the copolymer was reduced with an increase of the PBLG block in comparison with the Tm of the poloxamer, which is indicative of a thermoplastic property. The water contents of the copolymers were dependent on the poloxamer content in the copolymers, for example, those for the GPG‐2 (48.7 mol % poloxamer) and GPG‐1 (57.5 mol % poloxamer) copolymers were 31 and 41 wt %, respectively, indicating characteristics of a polymeric hydrogel. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2649–2656, 2003  相似文献   

2.
Enzymatic crosslinking was developed to prepare in situ forming poly(γ‐glutamic acid) (γ‐PGA) based hydrogel in this study. First, the precursor of poly(γ‐glutamic acid)–tyramine (γ‐PGA–Ty) was synthesized through the reaction of carboxyl groups from a γ‐PGA backbone with tyramine. The structure of the grafted precursor was confirmed by 1H‐NMR and Fourier transform infrared spectroscopy. After that, the crosslinking of the phenol‐containing γ‐PGA–Ty precursor was triggered by horseradish peroxidase in the presence of H2O2; this resulted in the formation of the γ‐PGA–Ty hydrogels. The equilibrium water content, morphology, enzymatic degradation rate, and mechanical properties of the hydrogels were characterized in detail. The data revealed that the well‐interconnected hydrogels had tunable water contents, mechanical properties, and degradability through adjustments of the composition. Furthermore, cell experiments proved the biocompatibility of the hydrogels by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay. These characteristics provide an opportunity for the in situ formation of injectable biohydrogels as potential candidates in cell encapsulation and drug delivery. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42301.  相似文献   

3.
A block copolymer based on poly(γ‐benzyl‐L ‐glutamate) (PBLG) as the hydrophobic part and poly(ethylene oxide) (PEO) as the hydrophilic part was synthesized and characterized. PBLG/PEO/PBLG (GEG) block copolymer nanoparticles were prepared using the dialysis technique. Fluorescence spectroscopy measurement suggested that GEG block copolymers were associated in water to form polymeric micelles and the critical micelle concentration (CMC) value of the GEG‐50 block copolymer was 0.0084 g/L. Particle‐size distribution of the GEG‐50 block copolymer based on the number average was 34.9 ± 17.6 nm. Also, the particle size and drug‐loading contents of GEG nanoparticles were significantly changed with the initial solvent used. From transmission electron microscope (TEM) observations, the GEG polymeric micelle was a nice spherical shape and the sizes ranged from approximately 20–60 nm in diameter. Results from assessing the drug‐loading contents against the initial solvent showed that the use of tetrahydrofuran (THF) or 1,4‐dioxane as the initial solvent resulted in higher drug‐loading contents than those of other solvents. In the drug‐release studies, the higher the molecular weight of the polymer and drug‐loading contents, the slower the drug release. Also, the initial solvent used was significantly affected not only in the drug‐loading contents but also in the drug‐release kinetics. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1115–1126, 2000  相似文献   

4.
One of the latest developments in the field of piezoelectric polymers is the use of poly(γ‐benzyl‐α,L‐glutamate) (PBLG), a poly(amino acid) that can be poled along its α‐helical axis and fabricated into thermally stable piezoelectric microfibers via electrospinning. This study demonstrates a method for improving the piezoelectricity of electrospun PBLG microfibers by controlling the orientation of fibers using a method based on a concentrated electric field. The piezoelectricity is verified via customized quasi‐static and dynamic measurement methods, while the correlation between fiber alignment and the piezoelectric constant, d33, in the longitudinal mode of the electrospun PBLG fibers is investigated. When the level of alignment was varied from 50% to 90%, the piezoelectric constant increased linearly, showing a maximum d33 of 27 pC N?1 and a maximum force sensitivity of 65 mV N?1 at peak alignment. A fabricated flexible prototype based on electrospun PBLG fibers provides a new solution for the use of PBLG fibers in wearable energy harvesters or composites based on piezoelectric polymer fibers. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46440.  相似文献   

5.
Yanan Yang  Jing Cai  Xiuli Zhuang  Xiabin Jing 《Polymer》2010,51(12):2676-2549
A novel biodegradable AB-type diblock copolymer poly(L-lactic- co-glycolic acid)-block-poly(l-glutamic acid) (PLGA-b-PGA) was synthesized by a macromolecular coupling reaction between carboxyl-terminated PLGA and amino-terminated poly(γ-benzyl-glutamate) (PBLG) and the subsequent elimination of the protecting benzyl group. The structures of PLGA-PGA and its precursors were confirmed by Fourier transform infrared spectroscopy (FT-IR), 1H nuclear magnetic resonance (1H NMR) spectroscopy and gel permeation chromatography (GPC). This synthetic strategy simplified a former synthesis process of polypeptide-poly(l-lactic acid)(PLA); by using this new synthetic route the molecular weight and block ratio of PLGA-PGA could be easily controlled by adjusting the chain length of PLGA/PGA. The pH sensitivity and self-assembly behavior of PLGA-PGA copolymer were investigated by environmental scanning electron microscopy (ESEM), transmission electron microscopy (TEM) and dynamic light scattering (DLS). The results showed that the copolymer exhibited high pH responses, and the morphologies of the copolymer aggregates underwent four stages orderly with the pH increase (pH = 3-9): a disorganized form, micelles, semi-vesicles with thick walls and vesicles. Such a pH-dependent self-assembly process of the copolymer is promising for drug control release and bio-applications.  相似文献   

6.
The synthesis, characterization and potential application in the doxorubicin (Dox) delivery system of a biodegradable polypeptide‐based block copolymer, poly(ethylene glycol)2000‐poly(?‐caprolactone)6000‐poly(glutamic acid)1000 (PEG2000‐PCL6000‐PGA1000), was investigated. The copolymer was synthesized via ring‐opening polymerization and characterized by 1H NMR and Fourier transform IR. The synthesized copolymer could self‐assemble into aggregates and the critical aggregation concentration was 0.23 mg mL?1. Transmission electron microscopy indicated that spherical polymersomes formed with a desirable size about 180 nm. Therefore Dox was encapsulated into these polymersomes, and then we investigated its applications in a drug delivery system. These Dox‐loaded polymersomes (PolyDox) were characterized by dynamic light scattering, zeta potential and pH responsiveness measurements. In vitro drug release indicated that the release rate of drug from PolyDox was pH‐responsive and significantly decreased. The drug pharmacokinetic parameters were improved in comparison to the group treated with free Dox, which proved the prolonged Dox release from PolyDox. A WST‐1 assay indicated a low toxicity and good compatibility of copolymer to cells within 48 h. The results also showed that PolyDox appeared to induce a higher anti‐tumor effect. Cell uptake results indicated that PolyDox displayed higher cellular uptake in A549 cells. Endocytosis inhibition results demonstrated that the internalization of PolyDox was mostly mediated by the fluid‐phase endocytosis pathway. © 2017 Society of Chemical Industry  相似文献   

7.
pH‐sensitive anionic hydrogels composed of poly(vinyl alcohol) (PVA) and poly(γ‐glutamic acid) (γ‐PGA) were prepared by the freeze drying method and thermally crosslinked to suppress hydrogel deformation in water. The physical properties, swelling, and drug‐diffusion behaviors were characterized for the hydrogels. In the equilibrium swelling study, PVA/γ‐PGA hydrogels shrunk in pH regions below the pKa (2.27) of γ‐PGA, whereas they swelled above the pKa. In the drug‐diffusion study, the drug permeation rates of the PVA/γ‐PGA hydrogels were directly proportional to their swelling behaviors. The cytocompatibility test showed no cytotoxicity of the PVA/γ‐PGA hydrogels for the 3T3 fibroblast cell lines. The results of these studies suggest that hydrogels prepared from PVA and γ‐PGA could be used as orally administrable drug‐delivery systems. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
Four poly(γ‐benzyl‐L ‐glutamate) (PBLG) derivatives bearing at one end specific groups were synthesized by ring‐opening polymerization of the corresponding γ‐benzyl‐L ‐glutamate N‐carboxyanhydride using different amine‐terminated initiators. These moieties were chosen to introduce, on demand, specific functionalities in nanoparticles of pharmaceutical interest. The PBLG and PBLG derivatives were characterized by 1H NMR, viscosimetry, Fourier transform infrared spectroscopy and differential scanning calorimetry. Nanoparticles smaller than 100 nm in diameter could be easily prepared from these PBLG derivatives by slight modification of a known nanoprecipitation technique. Copyright © 2006 Society of Chemical Industry  相似文献   

9.
The purpose of this study was to develop a poly(γ‐glutamic acid) (γ‐PGA)‐based hydrogel loaded with superoxide dismutase (SOD) to accelerate wound healing. First, γ‐PGA was modified with taurine (γ‐PGAS), and then the SOD‐loaded γ‐PGAS/γ‐PGA hydrogel (SOD‐PGAS/PGA‐H) was prepared by cross‐linking of ethylene glycol diglycidyl ether. The swelling behavior and water vapor transmission rate revealed that PGAS/PGA‐H could create a moist environment for wound surface. In vitro kinetics of SOD release showed that SOD released from PGAS/PGA‐H maintained high activity and SOD‐PGAS/PGA‐H effectively scavenged the superoxide anion. The results of our fibroblast proliferation experiments showed that PGAS/PGA‐H had good cytocompatibility. The effects of SOD‐PGAS/PGA‐H on wound healing were examined in a Type I diabetic rat model with full‐thickness wounds. Twenty‐one days after grafted to wounds, SOD‐PGAS/PGA‐H exhibited a higher rate of wound healing than control group and showed increased collagen deposition and epithelialization. SOD‐PGAS/PGA‐H seems to promote better wound healing and thus might be a promising candidate for wound healing management. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42033.  相似文献   

10.
Poly‐γ‐glutamic acid (γ‐PGA) is a natural polymer that is widely recognized as a component in the viscous filaments of fermented soybean (natto). γ‐PGA is known for its superior biodegradability, biocompatibility and water retention characteristics. Crosslinked γ‐PGA is commonly used as a hydrogel, but it is not used in the fiber form because it is soluble in water. In this study, we demonstrate the use of γ‐PGA‐Na for production of water insoluble γ‐PGA nanofibers by electrospinning. This result was accomplished using an aqueous solvent containing 10 wt % of an oxazoline component polymer as the crosslinking agent and by heat treatment. The crosslinking reaction was evaluated by solid‐state NMR. The nanofiber webs showed a high level of moisture absorption capability while retaining their fibrous shape. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
This research focuses on the synthesis of ethyl and ethoxy substituted polyaniline with poly(styrenesulfonic acid) comprising a poly(o‐phenetidine)–poly(styrenesulfonic acid) [P(O? P)‐PSSA] and poly(2‐ethylaniline)–poly(styrenesulfonic acid) [P(2‐E)‐PSSA]. The complexes P(O? P)‐PSSA and P(2‐E)‐PSSA were prepared by chemical polymerization of monomer (o‐phenetidine, 2‐ethylaniline) with PSSA using an oxidant of ammonium persulfate in 1M HCl solution; polyaniline (PANI), poly(2‐ethylaniline) (P2E), poly(o‐pheneditine) (POP), and polyaniline‐poly(styrenesulfonic acid) (PANI‐PSSA) also were prepared by chemical polymerization to be the reference samples. The products were characterized by IR, VIS, EPR, water solubility, elemental analysis, conductivity, SEM, and TEM. IR spectral studies shown that the structure of P(2‐E)‐PSSA and P(O? P)‐PSSA complexes is similar to that of polyaniline. EPR and visible spectra indicate the formation of polarons. The morphology of the blend was investigated by measured SEM and TEM, indicating the conducting component and electrically conductive property of the polymer complexes. The pH value for deprotonation [pH ≥ 9.5 for P(2‐E)‐PSSA and pH ≥ 8.0 for P(O? P)‐PSSA] are higher than that of corresponding HCl salts, indicating an intimate interaction between polymer chains. Elemental analysis results show that P(O? P)‐PSSA has a nitrogen‐to‐sulfur ratio of ~52%, larger than that for P(2‐E)‐PSSA, ~41%. The conductivity of the complexes is around 10?2S/cm, and the solubility of P(2‐E)‐PSSA and P(O? P)‐PSSA in water is 2.9 and 1.9 g/L, respectively. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1198–1205, 2005  相似文献   

12.
Poly(γ‐benzyl L ‐glutamate) (PBLG) gels with highly oriented α‐helix chains were prepared by the crosslinking of PBLG chains through changes in the concentration of ethylenediamine, used as a crosslinker, in 1,4‐dioxane in the presence of the strong magnetic field of an NMR magnet with a strength of 10.5 T. The experimental results showed that in one of these gels, long channels with an average diameter of about 100 μm were formed by phase separation between crosslinked PBLG and the solvent. Furthermore, three‐dimensional 1H‐NMR imaging patterns showed that the long channels were aligned in the direction parallel to the α‐helix axis. The PBLG gel was swollen in the direction perpendicular to the α‐helix axis, but it was not swollen in the direction parallel to the α‐helix axis. The X‐ray diffraction patterns of the gel showed that the interchain distance between the two nearest neighboring PBLG chains changed from 13.4 to 18.1 Å with a change in the swelling degree. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1053–1060, 2004  相似文献   

13.
Poly(methyl methacrylate)‐poly(L ‐lactic acid)‐poly(methyl methacrylate) tri‐block copolymer was prepared using atom transfer radical polymerization (ATRP). The structure and properties of the copolymer were analyzed using infrared spectroscopy, gel permeation chromatography, nuclear magnetic resonance (1H‐NMR, 13C‐NMR), thermogravimetry, and differential scanning calorimetry. The kinetic plot for the ATRP of methyl methacrylate using poly(L ‐lactic acid) (PLLA) as the initiator shows that the reaction time increases linearly with ln[M]0/[M]. The results indicate that it is possible to achieve grafted chains with well‐defined molecular weights, and block copolymers with narrowed molecular weight distributions. The thermal stability of PLLA is improved by copolymerization. A new wash‐extraction method for removing copper from the ATRP has also exhibits satisfactory results. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
Growth‐hormone‐releasing peptide 6 (GHRP‐6) plays an important role in animal growth. However, there have been few studies focusing on the effect of GHRP‐6 on animal growth through controlled release systems. We synthesized the poly(lactic‐co‐glycolic acid) (PLGA)–poly(ethylene glycol) (PEG)–PLGA copolymer to investigate its controlled released effect on GHRP‐6 in vitro and to study the effect of a GHRP‐6–copolymer hydrogel on the growth of rex rabbits. The copolymer was synthesized with ring‐opening copolymerization and characterized by 1H‐NMR. The interaction between GHRP‐6 and the copolymer was characterized by Fourier transform infrared spectroscopy and X‐ray diffraction. The body weight, serum level of insulin‐like growth factor 1 (IGF‐1), and hair coat quality were studied in rex rabbits. The results show that hydrogen bonds formed between the N? H group in GHRP‐6 and the C?O group in the copolymer. The release mechanism of GHRP‐6 was a combination of a diffusion‐controlled mechanism and an erosion‐controlled mechanism in the copolymer. The serum level of IGF‐1, hair coat quality, and body weight were all significantly higher in the GHRP‐6–copolymer hydrogel group than in the other groups. These results indicate that the copolymer effectively controlled the release of GHRP‐6. In addition, the GHRP‐6–copolymer hydrogel increased the synthesis of IGF‐1 for a prolonged period and, thereby, increased the rex rabbits' growth and hair coat quality. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40185.  相似文献   

15.
In this article, a new kind of biodegradable poly(ε‐caprolactone)‐poly(ethylene glycol)‐poly(ε‐caprolactone)‐based polyurethane (PCEC‐U) copolymers were successfully synthesized by melt‐polycondensation method from ε‐caprolactone (ε‐CL), poly(ethylene glycol) (PEG), 1,4‐butanediol (BD), and isophorone diisocyanate (IPDI). The obtained copolymers were characterized by 1H‐nuclear magnetic resonance (1H‐NMR), FTIR, and gel permeation chromatography (GPC). Thermal properties of PCEC‐U copolymers were studied by DSC and TGA/DTG under nitrogen atmosphere. Water absorption and hydrolytic degradation behavior of these copolymers were also investigated. Hydrolytic degradation behavior was studied by weight loss method. 1H‐NMR and GPC were also used to characterize the hydrolytic degradation behavior of PCEC‐U copolymers. The molecular weight of PCL block and PEG block in soft segment and the content of hard segment strongly affected the water absorption and hydrolytic degradation behavior of PCEC‐U copolymers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
Poly(p‐dioxanone)–poly(ethylene glycol)–poly(p‐dioxanone) ABA triblock copolymers (PEDO) were synthesized by ring‐opening polymerization from p‐dioxanone using poly(ethylene glycol) (PEG) with different molecular weights as macroinitiators in N2 atmosphere. The copolymer was characterized by 1H NMR spectroscope. The thermal behavior, crystallization, and thermal stability of these copolymers were investigated by differential scanning calorimetry and thermogravimetric measurements. The water absorption of these copolymers was also measured. The results indicated that the content and length of PEG chain have a greater effect on the properties of copolymers. This kind of biodegradable copolymer will find a potential application in biomedical materials. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:1092–1097, 2006  相似文献   

17.
The process of wound healing is composed of coagulation, inflammation, fibroplasia, collagenation, epithelization, and wound contraction. The wound dressing should protect the wound from bacterial infection, maintain a moist healing environment, and promote cell migration to reconstruct damaged tissue, and be easy to apply and remove to improve patient comfort. The purpose of our study was to develop multifunctional hydrogels composed of genipin‐crosslinked biodegradable biomaterials of poly(γ‐glutamic acid) and gelatin, encapsulating gentamicin to accelerate wound healing. The results of swelling ratio measurements clearly indicate that hydrogel composition of poly(γ‐glutamic acid)–gelatin had a higher swelling ratio and lower peel adhesion properties than gelatin hydrogel alone. In an in vitro study, the gentamicin incorporated in prepared hydrogels effectively inhibited target microorganisms and produced a higher expression of Type I collagen in fibroblast cells. Confocal laser scanning microscopy revealed that the fibroblast cells cultured in the hydrogel membranes produced fibroblast cell migration and showed a continuous lined cytoskeletal distributing status. In the in vivo study, it was found that the gentamicin incorporated in genipin‐crosslinked γ‐PGA–gelatin wound dressing demonstrates the potential of such biologically functionalized dressing to accelerate wound closure and, hence, its potential clinical usefulness. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
The quasiliving characteristics of the ring‐opening polymerization of ?‐caprolactone (CL) catalyzed by an organic amino calcium were demonstrated. Taking advantage of this feature, we synthesized a series of poly(?‐caprolactone) (PCL)–poly(L ‐lactide) (PLA) diblock copolymers with the sequential addition of the monomers CL and L ‐lactide. The block structure was confirmed by 1H‐NMR, 13C‐NMR, and gel permeation chromatography analysis. The crystalline structure of the copolymers was investigated by differential scanning calorimetry and wide‐angle X‐ray diffraction analysis. When the molecular weight of the PLA block was high enough, phase separation took place in the block copolymer to form PCL and PLA domains, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2654–2660, 2006  相似文献   

19.
Diblock copolymers with different poly(ε‐caprolactone) (PCL) block lengths were synthesized by ring‐opening polymerization of ε‐caprolactone in the presence of monomethoxy poly(ethylene glycol) (mPEG‐OH, MW 2000) as initiator. The self‐aggregation behaviors and microscopic characteristics of the diblock copolymer self‐aggregates, prepared by the diafiltration method, were investigated by using 1H NMR, dynamic light scattering (DLS), and fluorescence spectroscopy. The PEG–PCL block copolymers formed the self‐aggregate in an aqueous environment by intra‐ and/or intermolecular association between hydrophobic PCL chains. The critical aggregation concentrations of the block copolymer self‐aggregate became lower with increasing hydrophobic PCL block length. On the other hand, reverse trends of mean hydrodynamic diameters were measured by DLS owing to the increasing bulkiness of the hydrophobic chains and hydrophobic interaction between the PCL microdomains. The partition equilibrium constants (Kv) of pyrene, measured by fluorescence spectroscopy, revealed that the inner core hydrophobicity of the nanoparticles increased with increasing PCL chain length. The aggregation number of PCL chain per one hydrophobic microdomain, investigated by the fluorescence quenching method using cetylpyridinium chloride as a quencher, revealed that 4–20 block copolymer chains were needed to form a hydrophobic microdomain, depending on PCL block length. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3520–3527, 2006  相似文献   

20.
Laboratory‐scale synthesis and morphological and surface energy characterization of triblock A–B–A copolymers based on poly(lactic acid) (PLA; A segment) containing various block lengths of perfluoropolyether (PFPE; B segment) at 5 wt% PFPE content are reported. Incorporation of PFPE segments in PLA lowers significantly both the polar and dispersive components of total surface energy. Total surface energy is lowered from ca 35 to ca 17 mN m?1 on copolymerization of PLA with 5 wt% PFPE. Thermal analysis data reveal that lower molecular weight PFPE segments lower significantly the glass transition, crystallization and melting temperatures of the PLA matrix. Although block length variation of the PFPE segment does not affect surface energies of copolymer films, smaller PFPE segments increase significantly the low‐temperature modulus as observed from dynamic mechanical analysis. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号