首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
以3-溴丙炔、异氰尿酸为原料,利用相转移催化剂合成了三炔丙基异氰尿酸酯(TPIC),并用FT-IR、1H NMR对其结构进行了表征。用TGA表征了热固化后的TPIC的热性能。结果表明:热固化后的树脂在375℃开始分解,800℃的残炭率达75%。根据DSC曲线,TPIC的熔点为167℃左右,并用Kissinger、Flynn-Wall-Ozawa和Friedman-Reich-Levi法分别计算了热固化反应活化能,它们分别为46.81、48.70和40.92 kJ·mol-1,热固化反应级数都接近1,并探讨了固化反应过程与机理。通过对比分析表明,这3种方法均适用于TPIC体系。  相似文献   

3.
Dicyandiamide (DICY)‐cured epoxy resins are important materials for structural adhesives and matrix resins for fiber‐reinforced prepregs. Dynamic differential scanning calorimetry (DSC) with heating rates of 2.5, 5, 10, and 15°C/min was used to study the curing behavior of the epoxy prepreg Hexply 1454 system, which consisted of diglycidyl ether of bisphenol A, DICY, and Urone reinforced by glass fibers. The curing kinetic parameters were determined with three different methods and compared. These were the Kissinger, Ozawa, and Borchardt–Daniels kinetic approaches. The lowest activation energy (76.8 kJ/mol) was obtained with the Kissinger method, whereas the highest value (87.9 kJ/mol) was obtained with the Borchardt–Daniels approach. The average pre‐exponential factor varied from 0.0947 × 109 to 2.60 × 109 s−1. The orders of the cure reaction changed little with the heating rate, so the effect of the heating rate on the reaction order was not significant. It was interesting that the overall reaction order obtained from all three methods was nearly constant (≅2.4). There was good agreement between all of the methods with the experimental data. However, the best agreement with the experimental data was seen with the Ozawa kinetic parameters, and the most deviation was seen with the Borchardt kinetic parameters. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
以3-溴丙炔、异氰尿酸为原料,利用相转移催化剂合成了三炔丙基异氰尿酸酯(TPIC),并用FT-IR、1H NMR对其结构进行了表征。用TGA表征了热固化后的TPIC的热性能。结果表明:热固化后的树脂在375℃开始分解,800℃的残炭率达75%。根据DSC曲线,TPIC的熔点为167℃左右,并用Kissinger、Flynn-Wall-Ozawa和Friedman-Reich-Levi法分别计算了热固化反应活化能,它们分别为46.81、48.70和40.92 kJ·mol-1,热固化反应级数都接近1,并探讨了固化反应过程与机理。通过对比分析表明,这3种方法均适用于TPIC体系。  相似文献   

5.
吴竞  史铁钧  张方  王启东  周讯 《化工学报》2014,65(6):2372-2377
以3-溴丙炔、腰果酚为原料,利用相转移催化反应合成了炔基化腰果酚树脂,并用FT-IR、1H NMR对炔基化腰果酚的化学结构进行了表征,结果表明在相转移催化剂存在条件下,3-溴丙炔和腰果酚通过Williamson成醚反应成功制备了目标产物。用TG研究固化后的炔基化腰果酚树脂热稳定性能,结果表明,固化后树脂的起始降解温度为419℃,800℃时的残炭率为14%,说明其具有很好的耐热性能。根据DSC曲线,用Kissinger和Flynn-Wall-Ozawa分别计算了热固化反应活化能,分别为143.46 kJ·mol-1和145.15 kJ·mol-1,热固化反应级数都接近1,因此说明这两种模式很适合这种体系。  相似文献   

6.
The cure of a commercial epoxy resin system, RTM6, was investigated using a conventional differential scanning calorimeter and a microwave‐heated calorimeter. Two curing methods, dynamic and isothermal, were carried out and the degree of cure and the reaction rates were compared. Several kinetics models ranging from a simple nth order model to more complicated models comprising nth order and autocatalytic kinetics models were used to describe the curing processes. The results showed that the resin cured isothermally showed similar cure times and final degree of cure using both conventional and microwave heating methods, suggesting similar curing mechanisms using both heating methods. The dynamic curing data were, however, different using two heating methods, possibly suggesting different curing mechanisms. Near‐infrared spectroscopy showed that in the dynamic curing of RTM6 using microwave heating, the epoxy‐amine reaction proceeded more rapidly than did the epoxy‐hydroxyl reaction. This was not the case during conventional curing of this resin. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3658–3668, 2006  相似文献   

7.
Epoxy‐silica nanocomposites were obtained from directly blending diglycidylether of bisphenol‐A (DGEBA)‐based epoxy and nanoscale silica (NS) and then curing with 4,4′‐diaminodiphenylamine (DDA). The effect of amount of nanosilica (NS) particles as catalyst on the mechanism and kinetic parameters of cure reaction of DGEBA/DDA system was studied. The kinetics parameters were obtained from nonisothermal differential scanning calorimeter (DSC) data using the Kissinger and Ozawa equations. The exothermic peak was shifted toward lower temperatures in DGEBA/DDA/NS system with increasing the amount of nanoslica particles. However, the existence of NS particles with hydroxyl groups in the structure in the mixture of DGEBA/DDA catalyzes the cure reaction and increases the rate constant. The activation energy of cure reaction of DGEBA/DDA system obtained from two methods were in good agreement, and showed a decrease when NS particles were present in the mixture. The mechanism of reaction of DGEBA with DDA was carried out by isothermal curing in the oven at 130°C and measuring the disappearance peak of epoxide group at 916 cm?1 using FTIR. The diffusive behavior of two systems was investigated during water sorption at 25°C and the experimental results fitted well to Fick's law. Diffusion coefficient of cured sample from DGEBA/DDA/10% NS blend decreased in comparison with the sample without NS particles. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3855–3863, 2007  相似文献   

8.
The cure of an epoxy resin system, based upon a diglycidyl ether of bisphenol‐A (DGEBA) with HY917 (an acid anhydride hardener) and DY073 (an amine–phenol complex that acted as an accelerator), was investigated using a conventional differential scanning calorimeter and a microwave‐heated power‐compensated calorimeter. Dynamic cure of the epoxy resin using four different heating rates and isothermal cure using four different temperatures were carried out and the degree of cure and reaction rates were compared. The cure kinetics were analyzed using several kinetics models. The results showed different activation energies for conventional and microwave curing and suggested different reaction mechanisms were responsible for curing using the two heating methods. Resins cured using conventional heating showed higher glass transition temperatures than did those cured using microwave heating. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2054–2063, 2007  相似文献   

9.
The cure reaction kinetics of epoxy resin, with organically modified montmorillonite loadings of up to 20 wt % and with stoichiometric conditions, has been studied by differential scanning calorimetry with a view to understanding further the fabrication of epoxy‐based polymer layered silicate nanocomposites. The kinetic analysis of isothermal and nonisothermal cure shows that the autocatalytic model is the more appropriate to describe the kinetics of these reactions, and it is observed that a dominant effect of the montmorillonite is to catalyze the curing reaction. However, it was not possible to model the reactions over the whole range of degrees of conversion, in particular for nonisothermal cure. This attributed to the complexity of the reactions, and especially to the occurrence of etherification by cationic homopolymerization catalyzed by the onium ion of the organically modified montmorillonite. The homopolymerization reaction results in an excess of diamine in the system, and hence in practice the reaction is off stoichiometric, which leads to a reduction in both the heat of cure and the glass transition temperature as the montmorillonite content increases. Small angle X‐ray scattering of the cured nanocomposites shows that an exfoliated nanostructure is obtained in nonisothermal cure at slow heating rates, whereas for nonisothermal cure at faster heating rates, as well as for isothermal cure at 70°C and 100°C, a certain amount of exfoliation is accompanied by the growth of d‐spacings of 1.4 nm and 1.8 nm for dynamic and isothermal cure, respectively, smaller than the d‐spacings of the modified clay before intercalation of the resin. A similar nanostructure, consisting of extensive exfoliation accompanied by a strong scattering at distances less than the d‐spacing of the modified clay, is also found for resin/clay mixtures, before the addition of any crosslinking agent, which have been preconditioned by storage for long times at room temperature. The development of these nanostructures is attributed to the presence of clay agglomerations in the original resin/clay mixtures and highlights the importance of the quality of the dispersion of the clay in the resin in respect of achieving a homogeneous exfoliated nanostructure in the cured nanocomposite. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
A novel imidazole derivative (named as EMI‐g‐BGE) was synthesized through the reaction of 2‐ethyl‐4‐methyl imidazole (EMI) and butyl glycidyl ether (BGE) and characterized by elemental analysis, FTIR spectroscopy, and 1H NMR spectroscopy. The curing kinetic of diglycidyl ether of bisphenol A (DGEBA) epoxy resin with EMI‐g‐BGE as curing agent was studied by nonisothermal DSC technique at different heating rates. Dynamic DSC scans indicated that EMI‐g‐BGE was an effective curing agent of epoxy resin. The apparent activation energy Ea was 71.8 kJ mol?1 calculated through Kissinger method, and the kinetic parameters were determined by Málek method for the kinetic analysis of the thermal treatment obtained by DSC measurement. A two‐parameter (m, n) autocatalytic model (?esták‐Berggren equation) was found to be the most adequate selected kinetic model. In addition, the predicted curves from the kinetic model fit well with the nonisothermal DSC thermogram. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
This article focuses on the analysis of the curing kinetics of carbon‐fiber‐reinforced bismaleimide (BMI) composites during microwave (MW) curing. A nonisothermal differential scanning calorimetry (DSC) method was used to obtain an accurate kinetic model. The degree of curing, chemical characterization, and glass‐transition temperature of the resin and composites cured by thermal and MW heating were analyzed with DSC, Fourier transform infrared spectroscopy, and dynamic mechanical analysis. The experimental results indicate that MW accelerated the crosslinking reaction of the BMI resin and had different effects on the reaction processes, especially for the glass‐transition temperature and chemical bonds. However, the curing reaction rate of the BMI resin decreased when the carbon fibers were added to the BMI resin during thermal and MW curing. According to the experimental results, the curing kinetic model of the BMI composite was used to provide a theoretical foundation for MW curing analysis. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43770.  相似文献   

12.
The curing kinetics of blends of diglycidyl ether of bisphenol A (DGEBA), cycloaliphatic epoxy resins, and carboxyl‐terminated butadiene‐acrylonitrile random copolymer (CTBN) in presence of 4,4′‐diamino diphenyl sulfone (DDS) as the curing agent was studied by nonisothermal differential scanning calorimetry (DSC) technique at different heating rates. The kinetic parameters of the curing process were determined by isoconversional method given by Malek for the kinetic analysis of the data obtained by the thermal treatment. A two‐parameter (m, n) autocatalytic model (Sestak‐Berggren equation) was found to be the most adequate selected to describe the cure kinetics of the studied epoxy resins. The values of Ea were found to be 88.6 kJ mol?1 and 61.6 kJ mol?1, respectively, for the studied two sample series. Nonisothermal DSC curves obtained using the experimental data show a good agreement with that theoretically calculated. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
采用非等温DSC研究了纳米二氧化钛改性环氧树脂体系(EP)的固化动力学,采用Flynn-Wall-Ozawa和Vyazovkin非线性等转化率方法(NLV)法分析了固化活化能与转化率的关系,利用Kissinger和Crane方程研究了固化动力学参数,根据不同升温速率下DSC固化反应曲线确定了固化工艺参数。结果表明,纳米二氧化钛促进了环氧树脂的固化,降低了固化反应的活化能,但没有改变环氧树脂的固化机理。  相似文献   

14.
The effects of curing agent (p‐toluene sulfonic acid, PTSA) concentration, i.e., 1.0, 1.5, 2.0, 2.5, and 3.0 wt% on neat phenolic resin (in absence of carbon black) were investigated through the measurement of density, weight loss, linear shrinkage, and mechanical properties under compression mode to understand the carbonization behavior of carbon–carbon composite. The study was carried out after curing, postcuring, and carbonization. Also, thermogravimetric analysis was used to study the effects of curing agent concentration on thermal stability and kinetic parameters (i.e., activation energy, order of decomposition, pre‐exponential term, etc). The kinetic parameters were evaluated by using four single heating rate techniques namely Friedman, Coats‐Redfern, Freeman‐Carroll, and Chang methods. Further, to study the effects of both carbon black filler loading and carbonization temperature, phenolic‐carbon black composites were prepared at the loading of 10, 20, 30, 40 wt% using 1.5 wt% of PTSA. These were also investigated through density, weight loss, and shrinkage measurements after curing, postcuring, and carbonizing at the temperature of 600, 1000, and 1400°C in nitrogen atmosphere. To analyze the evolution of carbon phase X‐ray diffraction study was carried out for the carbonized samples. Finally, cured, postcured and carbonized composite samples were subjected to compression tests to study the compression strength and modulus. POLYM. COMPOS., 31:2069–2078, 2010. © 2010 Society of Plastics Engineers  相似文献   

15.
非等温DSC法研究苯并恶嗪树脂固化反应动力学   总被引:1,自引:0,他引:1  
采用非等温DSC法对M型苯并恶嗪(MBOZ)固化动力学进行了研究。分别通过n级反应模型和自催化模型求解出反应动力学参数,进而得到固化反应动力学模型。结果表明,n级反应模型与实验值的差别较大;而采用自催化模型得到的曲线与实验得到的DSC曲线吻合较好,所确立的模型在5~15 K/min的升温速率下能较好地描述MBOZ的固化反应过程,并为其树脂基复合材料工艺优化条件提供了理论依据。  相似文献   

16.
17.
环氧树脂/活化纳米氧化铝复合材料的固化动力学   总被引:2,自引:1,他引:1       下载免费PDF全文
采用氢氧化钠溶液将纳米氧化铝表面活化,利用Y-缩水甘油醚氧丙基三甲氧基硅烷(KH560)和环氧树脂对活化纳米氧化铝进行表面处理而引入环氧基团.采用差示扫描量热法(DSC)研究复合材料的非等温固化行为,分析了活化纳米氧化铝及其环氧功能化产物对环氧树脂固化动力学参数与机理的影响,运用等转化率方法包括Friedman方法与K...  相似文献   

18.
The cure behavior of epoxy resin with a conventional amide‐type hardener (HD) was investigated in the presence of castor oil (CO), cashew nut shell liquid (CNSL), and cashew nut shell liquid–formaldehyde resin (CFR) with dynamic differential scanning calorimetry (DSC). The activation energy of the curing reaction was also calculated on the basis of nonisothermal DSC thermograms at various heating rates. A one‐stage curing was noted in the case of epoxy resin filled with CO, whereas the epoxy resin with CNSL and CFR showed a two‐stage curing process. A competitive cure reaction was noted for the epoxy resin/CNSL(or CFR)/HD blends. In the absence of HD, CFR showed lower values of curing enthalpy than that of CNSL. The activation energy of epoxy resin curing increased with increasing CNSL and CFR loading. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

19.
运用示差扫描量热(DSC)法研究了邻苯二甲酸二烯丙基酯(DAP)树脂的固化反应历程。讨论了引发剂对DAP固化特性的影响,并由DSC曲线得到了DAP树脂的固化工艺和动力学参数。通过固化度、FT-IR的测试对DAP树脂在中温条件下的固化情况进行了研究。结果表明:在过氧化二异丙苯(DCP)固化体系中引入BPO可以使DAP树脂在更低温度下引发固化;在BPO、DCP用量均为2%的条件下,确定了体系的凝胶温度、固化温度、后处理温度分别为:100.5℃,124.3℃,137.8℃,表观活化能为129.3 kJ/mol,反应级数为0.950。固化度、FTIR的测试结果表明:DAP树脂在中温条件下可以固化得较完全。  相似文献   

20.
In this article, the curing kinetics of two fast cure flip-chip epoxy encapsulants under both isothermal and nonisothermal conditions are investigated by differential scanning calorimetry. The method allows determination of the most suitable kinetic model and corresponding parameters. The kinetic analysis suggests that the two-parameter autocatalytic model is more appropriate to describe the kinetics of the curing reaction. There are certain differences between the kinetic data from isothermal and that from nonisothermal measurements. The apparent activation energy Ea and pre-exponential factor A of E-AB1 determined from nonisothermal experiments were higher than the isothermal values, whereas the Ea and A of E-RV2 determined from both methods are relatively close. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1501–1508, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号