首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polyurethane (PU)–polypyrrole (PPy) composite films and nanofibers were successfully prepared for the purpose of combining the properties of PU and PPy. Pyrrole (Py) monomer was polymerized and dispersed uniformly throughout the PU matrix by means of oxidative polymerization with cerium(IV) [ceric ammonium nitrate Ce(IV)] in dimethylformamide. Films and nanofibers were prepared with this solution. The effects of the PPy content on the thermal, mechanical, dielectric, and morphological properties of the composites were investigated with differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), Fourier transform infrared (FTIR)–attenuated total reflection (ATR) spectroscopy, dielectric spectrometry, and scanning electron microscopy. The Young's modulus and glass-transition temperatures of the composites exhibited an increasing trend with increases in the initially added amount of Py. The electrical conductivities of the composite films and nanofibers increased. The crystallinity of the composites were followed with DSC, the mechanical properties were followed with DMA, and the spectroscopic results were followed with FTIR–ATR spectroscopy. In the composite films, a new absorption band located at about 1650 cm−1 appeared, and its intensity improved with the addition of Py. The studied composites show potential for promising applications in advanced electronic devices. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
Polypyrrole (PPy) thin films were synthesized by plasma polymerization technique and investigated the influence of discharge power on microstructural, optical, surface wettability, and dielectric properties of grown films. As deposited PPy films were characterized by X‐ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR), Atomic force microscopy, UV‐VIS spectroscopy and dielectric spectroscopy. The broad XRD peak present at 2θ = 23.5° revealed the amorphous nature of grown PPy films. The FTIR spectra displayed characteristic peaks in the wavenumbers regions 3300–3400 cm?1 and 1635–1700 cm?1 and respective peaks intensities decreased slightly as a function of discharge powers. Significant modifications in surface morphology of the films were observed as a function of discharge powers and PPy films synthesized at higher discharge power of 50 W demonstrated characteristic surface morphology composed of characteristic vertical cone shaped clusters provided with rms roughness of 3.42 nm. The UV‐VIS absorption spectra evidenced that the optical density values varied as a function of discharge power. The evaluated band gap energies decreased with an increase of discharge power and found to be 2.53 eV for PPy films prepared at higher discharge power of 50 W. The surface wettability studies evidenced that as prepared PPy films were found to be hydrophilic in nature. The dielectric measurements were carried out for “ITO/polymer/ITO” structures in the frequency range 10 mHz to 100 kHz. As evidenced from dielectric spectroscopic measurements, PPy films synthesized at 50 W were demonstrated conductivity value of 6.0 × 10?12 S/m. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43982.  相似文献   

3.
In the present study, fumed silica (SiO2) nanoparticle reinforced poly(vinyl alcohol) (PVA) and poly(vinylpyrrolidone) (PVP) blend nanocomposite films were prepared via a simple solution‐blending technique. Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible spectroscopy (UV–vis), X‐ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to elucidate the successful incorporation of SiO2 nanoparticles in the PVA/PVP blend matrix. A thermogravimetric analyzer was used to evaluate the thermal stability of the nanocomposites. The dielectric properties such as dielectric constant (?) and dielectric loss (tan δ) of the PVA/PVP/SiO2 nanocomposite films were evaluated in the broadband frequency range of 10?2 Hz to 20 MHz and for temperatures in the range 40–150 °C. The FTIR and UV–vis spectroscopy results implied the presence of hydrogen bonding interaction between SiO2 and the PVA/PVP blend matrix. The XRD and SEM results revealed that SiO2 nanoparticles were uniformly dispersed in the PVA/PVP blend matrix. The dielectric property analysis revealed that the dielectric constant values of the nanocomposites are higher than those of PVA/PVP blends. The maximum dielectric constant and the dielectric loss were 125 (10?2 Hz, 150 °C) and 1.1 (10?2 Hz, 70 °C), respectively, for PVA/PVP/SiO2 nanocomposites with 25 wt % SiO2 content. These results enable the preparation of dielectric nanocomposites using a facile solution‐casting method that exhibit the desirable dielectric performance for flexible organic electronics. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44427.  相似文献   

4.
In the study, polycyanurate (PCN)/epoxy resin (ER) blends are prepared to enhance the physical properties of cyanate ester resins. The effects of curing schedule and blend composition on their thermal, mechanical, and dielectrical properties of cured PCN/epoxy blend films are examined. FTIR analysis of the cured blend films exhibits the expected cyanurate and oxazolidinone peaks in all blend compositions except the film thermally treated for 1 h in the presence of 1% phenol. TGA results show that the thermal stability decreases with epoxy content in the blend film. From SEM analyses, it is observed that all films have very dense, smooth, and bubble free surface without phase separation. For the pure PCN, the dielectric constants are found to be 3.54–5.91 in the range of 10?1–107 Hz between 20°C and 200°C. PCN/epoxy blends up to 50% epoxy resin show a good stability of dielectric constant in this frequency band for 200°C, which is close to the dielectric constant of the homopolymerized PCN. Beyond this percentage of epoxy resin, dielectric constants of PCN/epoxy blends greatly increase at low‐frequency region (0.1–103 Hz) due to the interfacial polarization governed by Maxwell–Wagner–Sillars effect. POLYM. ENG. SCI., 58:820–829, 2018. © 2017 Society of Plastics Engineers  相似文献   

5.
Maleic anhydride‐grafted polypropylene (MA‐g ‐PP) was hybridized with pure PP to form hybrid films with the aim to enhance the dielectric performances of the PP film via polarity adjustment. The changes of microstructure and crystallinity of PP matrix by MA‐g ‐PP incorporation were studied, and the polarity change was identified by the surface wettability. The dielectric behaviors of the hybrid films were explored. Increasing polarity of PP film leads to increase in dielectric constant but decrease in breakdown strength, and a balance is achieved in 10 vol % MA‐g ‐PP/PP hybrid film, with the maximum discharge energy density reaching 1.96 J cm?3 and charge–discharge efficiency as high as 96%. The ultralow loss is attributed to the dense and homogeneous microstructure together with increased crystallinity induced by incorporation of MA‐g ‐PP. These PP‐based films with increased polarity not only show enhanced dielectric performances but also provide a type of matrix that would be compatible with polar fillers to further increase dielectric properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45029.  相似文献   

6.
Development of thin, flexible, light‐weight, renewable, low‐cost, and environmentally friendly electrode materials are highly feasible in era of modern disposable electronic technology. This article presents the synthesis and dielectric studies of polypyrrole (PPy) coated pulp fibers, directly collected from wasted egg holder's tray. PPy coated pulp fibers converted into compact sheet for the development of potential renewable and low‐cost electrode materials. The morphology, chemical structure, and thermal stability of naked and PPy coated pulp fibril sheets were investigated by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA), respectively. PPy coated pulp fibers revealed better thermal stability and compactness of sheet morphology. Impedance measurements showed a high value of dielectric constant of 1.15 × 106 at 0.5 Hz and conductivity of 7.45 × 10?4 S/cm at room temperature for PPy coated pulp fibril sheet. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42422.  相似文献   

7.
In this study, a novel aluminum phosphate (AlPO4) heat‐resistant layer reinforced with aluminum silicate fiber (ASF) was successfully compounded on a poly(ether sulfone) (PES) matrix via the preparation process of high‐temperature heat treatment and vacuum hot‐pressing sintering technique. The influence of the ASF content on the morphology, thermal, mechanical, and dielectric properties of the as‐fabricated aluminum silicate fiber reinforced aluminum phosphate–poly(ether sulfone) (ASF/AlPO4–PES) layered composite was investigated. The results reveal that the incorporation of aluminum silicate fiber/aluminum phosphate (ASF/AlPO4) heat‐resistant layer can significantly improve the thermal stability and mechanical performances of the PES matrix composites. Compared with the pristine PES, the ASF/AlPO4–PES layered composite containing 8.0 wt % ASF exhibited better high‐temperature resistance properties (300 °C) and a lower thermal conductivity (0.16 W m?1 K?1). Furthermore, the dielectric constant and dielectric loss tangent of this PES matrix composite decreased to 2.16 and 0.007, respectively. Meanwhile, the frequency stability of the dielectric properties for the ASF/AlPO4–PES layered composites was remarkably enhanced with increasing ASF addition at frequencies ranging from 102 Hz to 5 MHz. This was attributed to the existence of microscopic pores within the ASF/AlPO4 layer and the strong interfacial bonding between the ASF/AlPO4 layer and the PES matrix. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45542.  相似文献   

8.
A novel organic–inorganic hybrid of epoxycyclohexyl polyhedral oligomeric silsesquioxane (e‐POSS)–grafted carboxylic methoxypolyethylene glycols (mPEG‐COOH), that is, a POSS‐mPEG graftomer, was synthesized. The grafting reaction of e‐POSS and mPEG‐COOH was characterized by Fourier transform infrared (FTIR) and 1H‐NMR spectroscopy. Then the graftomer was used to develop new composite solid polymer electrolyte (SPE) films with a carboxylated nitrile rubber–epoxidized natural rubber (XNBR‐ENR) self‐crosslinked blend system as a dual‐phase polymer matrix. The self‐crosslinked reaction of the XNBR‐ENR matrix was investigated using ATR‐FTIR. The morphology of the SPE films and the distribution of lithium salt were investigated using field emission scanning electron microscopy and X‐ray diffraction, and the result illustrated that the addition of POSS‐mPEG could promote and accelerate the dissociation of LiClO4. The best effect within the range of this study was achieved when 25 phr POSS‐mPEG was involved. The differential scanning calorimetry analysis proved that the glass‐transition temperature of the composite SPE films was reduced with the increase of POSS‐mPEG. The ionic conductivity of the composite SPE films was investigated by electrochemical impedance spectroscopy. The highest ionic conductivity in this study of 2.57 × 10?5 S cm?1 was obtained with 25 phr POSS‐mPEG loading. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44460.  相似文献   

9.
Supercritical carbon dioxide, saturated with pyrrole, was brought into contact with oxidant‐impregnated films of poly(chlorotrifluoroethylene) (PCTFE), crosslinked poly(dimethylsiloxane) (PDMS), poly(methyl methacrylate) (PMMA), and porous crosslinked polystyrene (PS) in order to form conducting composites via the in situ polymerization of pyrrole. The two nonporous hosts—PCTFE and crosslinked PDMS—did not form conducting composites with polypyrrole (PPy). On the other hand, the electrical conductivity of the PPy composites with carbon dioxide‐swollen PMMA and porous PS ranged from 1.0 × 10?4 S/cm to 3.0 × 10?5 S/cm. In these two cases, the level of pyrrole polymerized on the surface or in the pores of the host polymer was sufficient to attain the interconnected conducting polymer networks necessary for electrical conductivity. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1113–1116, 2003  相似文献   

10.
《Polymer Composites》2017,38(10):2146-2155
Electrically conducting fibers were prepared through in situ oxidative polymerization of pyrrole (Py) in the presence of peach palm fibers (PPF) using iron (III) chloride hexahydrate (FeCl3·6H2O) as oxidant. The polypyrrole (PPy) coated PPF displayed a PPy layer on the fibers surface, which was responsible for an electrical conductivity of (2.2 ± 0.3) × 10−1 S cm−1, similar to the neat PPy. Electrically conductive composites were prepared by dispersing various amounts of PPy‐coated PPF in a polyurethane matrix derived from castor oil. The polyurethane/PPy‐coated PPF composites (PU/PPF–PPy) exhibited an electrical conductivity higher than PU/PPy blends with similar filler content. This behavior is attributed to the higher aspect ratio of PPF–PPy when compared with PPy particles, inducing a denser conductive network formation in the PU matrix. Electromagnetic interference shielding effectiveness (EMI SE) value in the X‐band (8.2–12.4 GHz) found for PU/PPF–PPy composites containing 25 wt% of PPF–PPy were in the range −12 dB, which corresponds to 93.2% of attenuation, indicating that these composites are promising candidates for EMI shielding applications. POLYM. COMPOS., 38:2146–2155, 2017. © 2015 Society of Plastics Engineers  相似文献   

11.
Polythiophene (PT) was grafted on PE film using three reaction steps. First, PE films were brominated in the gas phase, yielding PE–Br; second, a substitution reaction of PE–Br with 2‐thiophene thiolate anion gave the thiophene‐functionalized PE; finally PT was grafted on the PE surface using chemical oxidative polymerization to give PE–PT. The polymerization was carried out in a suspension solution of anhydrous FeCl3 in CHCl3, yielding a reddish PE–PT film after dedoping with ethanol. ATR‐FTIR shows that the PT was grafted on PE in the 2,5‐position. SEM imaging revealed islands of PT on the PE film. AFM analysis found the thickness of islands to be in the range of 120–145 nm. The conductivity of these thin films was in the range of 10?6 S cm?1, a significant increase from the value of ~10?14 S cm?1 measured for PE film. © 2003 Society of Chemical Industry  相似文献   

12.
Supercritical carbon dioxide (SC‐CO2) has been used to assist the preparation of conductive polypyrrole/cellulose diacetate (PPy/CDa) composites by in situ chemical oxidative polymerization. The morphology and conductivity of resulted composites were investigated with scanning electron microscopy and four‐probe method, respectively. With the assistance of strong swelling effect of SC‐CO2, composite films were obtained with a macroscopically homogeneous structure and conductivity up to 10?1 S cm?1 order of magnitude. Increasing the pressure of SC‐CO2 increased conductivity, while increasing the temperature decreased conductivity. For comparison, PPy/CDa composite was also prepared with conventional oxidative method in aqueous solution. From the viewpoint of conductivity and environmental protection, the SC‐CO2 method showed its superiority over the conventional one. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4575–4580, 2006  相似文献   

13.
A series of inorganic–organic molecular hybrids, poly(styrene‐co‐octavinyl‐polyhedral oligomeric silsesquioxane)s (PS‐POSSs), were synthesized, and their structures and properties were characterized by FTIR, 1H‐NMR, 29Si‐NMR, XRD, optical microscopy (OM), and atomic force microscopy (AFM). The chemical incorporation of POSS into polymer matrixes achieves uniform dispersion and makes the resultant hybrids display good film formability. The relationship between molecular structure of these hybrids and their dielectric constants and formation mechanism of low dielectric constant were investigated. The low dielectric constant of the hybrids mainly originates from the increase of free volume, involving the free volume of intrinsic porosity from POSS and an increase in the free volume owing to steric hindrance of bulky POSS. The latter plays a dominant role to increase the free volume and formation of low dielectric constant. Simultaneously, the polymer arm‐length has an important influence on the dielectric constant of the star‐type hybrids. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
An amperometric vitamin C biosensor was facilely fabricated by the immobilization of ascorbate oxidase (AO) on polypyrrole (PPy)–multiwalled carbon nanotubes (MWCNTs) composites with a one‐step electrodeposition technique in a 0.05M phosphate buffer solution (pH 6.5). The cyclic voltammetry, IR spectral analysis, electrochemical impedance spectroscopy, and scanning electron microscopy measurements indicated that AO was successfully immobilized on the PPy–MWCNT composites. The optimization of the biosensor parameters, including the working potential, pH, and temperature, was investigated in detail. The proposed biosensor showed a linear range of 5 × 10?5 to 2 × 10?2 M with a detection limit of 0.3 μM, a sensitivity of 25.9 mA mM?1 cm?2, and a current response time less than 20 s under the optimized conditions. The apparent Michaelis–Menten constant together with the apparent activation energy indicated that the proposed biosensor exhibited a high bioaffinity and a good enzyme activity. In addition, the biosensor also showed good operational and storage stabilities. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
In this paper the dielectric properties of crack‐free, Bi12SiO20 thin films were investigated. The films were prepared on Pt/TiO2/SiO2/Si and corundum substrates using the sol–gel method. The formation of a pure Bi12SiO20 phase was observed at a temperature of 700°C. The Bi12SiO20 thin films, heat treated at 700°C for 1 h, had a dense microstructure with an average roughness (Ra) of 50 nm. The dielectric properties of the film were characterized by using both low‐ and microwave‐frequency measurement techniques. The low‐frequency measurements were conducted with a parallel capacitor configuration. The dielectric constant and dielectric losses were 44 and 7.5 × 10?3, respectively. The thin‐film dielectric properties at the microwave frequency were measured using the split‐post, dielectric resonator method (15 GHz) and the planar capacitor configuration (1–5 GHz). The dielectric constant and the dielectric losses measured at 15 GHz were 40 and 17 × 10?3, respectively, while the dielectric constant and the dielectric losses measured with the planar capacitor configuration were 39 and 65 × 10?3, respectively.  相似文献   

16.
Graphene (GNs)/ polypyrrole (PPy) nanocomposites with different content of GNs prepared by in-situ polymerization possess negative permittivity in the range of test frequency. Importantly, the GNs/PPy nanocomposites also have low dielectric loss tangent. ATR and XRD tests showed that no significant change in chemical bond and crystallization is found in GNs/PPy nanocomposites. SEM analysis indicated that GNs/PPy nanocomposites form different morphologies with the increase of GNs content. The negative permittivity of GNs/PPy nanocomposites is mainly caused by the plasmon resonance of the free electrons. The variation of resistivity and negative permittivity are basically consistent, which reflects that the good conductivity of the nanocomposites is attribute to the plasmon resonance of free electrons. The moderate addition of GNs is beneficial to the development of permittivity to a great negative value and decrease the dielectric loss tangent. The negative permittivity is up to ?1.226?×?105 and the dielectric loss tangent is reduce to 0.32 in GNs/PPy nanocomposites with 10?wt% GNs content. The negative permittivity and the low dielectric loss tangent in GNs/PPy nanocomposites is achieved in a wider frequency range 1–1000?MHz.  相似文献   

17.
Nanoparticles of polypyrrole (PPy) in 40/60 wt % natural rubber (NR)–polystyrene (PS) blends were synthesized by emulsion polymerization using ferric sulfate [Fe2 (SO4)3], sodium dodecyl sulfate (SDS), and n‐amyl alcohol as the oxidant, surfactant, and cosurfactant, respectively. The NR/PS/PPy blends were characterized by Fourier transform infrared spectroscopy (FTIR), elemental analysis, thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FESEM). FESEM micrographs showed that NR/PS/PPy blends were homogeneous, and PPy nanoparticles were well distributed throughout the binary matrix of NR/PS. The size of PPy particles in the blends was in the range of 26–80 nm. The electrical conductivities of the pellets prepared from NR/PS/PPy blends increased as the composition of PPy nanoparticles was increased, which were in the range of 8.9 × 10?8 – 2.89 × 10?4 S/cm. Thermal stability of the blends increased as the content of PPy was increased, as shown by TGA thermograms. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
Pyrrole monomer was polymerized by a chemical oxidative route in the presence of graphene oxide (GO), reduced GO (rGO), and graphene nanoribbons (GNR) separately to prepare composites of polypyrrole (PPy) as PPy–GO, PPy–rGO, and PPy–GNR, respectively. The morphological, chemical, and structural characterization of the as‐synthesized products was carried out using scanning electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy. Field emission studies of the PPy–GO, PPy–rGO, and PPy–GNR emitters were performed at the base pressure of 1 × 10?8 mbar in a planar “diode” configuration. The turn‐on field values, corresponding to an emission current density of 1 µA/cm2, are observed to be 1.5, 2.2, and 0.9 V/µm for the PPy–GO, PPy–rGO, and PPy–GNR emitters, respectively. The maximum emission current density of 2.5 mA/cm2 is drawn from PPy–GO at an applied electric field of 3.2 V/µm, 1.2 mA/cm2 at 3.6 V/µm from the PPy–rGO, and 8 mA/cm2 at 2.2 V/µm from the PPy–GNR emitters. All of the composites exhibit good emission stability over more than 2 h. The results indicate the potential for a facile route for synthesizing composites of conducting polymers and graphene‐based materials, with enhanced functionality. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45170.  相似文献   

19.
We report the development of a novel route for the synthesis of polypyrrole/graphene (PPy/GR) composites by liquid ? liquid interfacial polymerization, where GR and the initiator were dispersed in the aqueous phase and the monomer was dissolved in the organic phase. The synthesized samples were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, ultraviolet–visible spectroscopy, Raman spectroscopy, X‐ray diffraction, thermogravimetric analysis, electrochemical and electrical conductivity measurements. Structural analysis reveals a uniform dispersion of GR sheets in the PPy matrix. The composites showed noticeable improvement in thermal stability and electrical conductivity (8.45 S cm?1) and excellent electrochemical reversibility in comparison with pure PPy. A specific capacitance of 260 F g?1 at a current density of 100 mA g?1 was achieved for the composite during the charge–discharge process. © 2013 Society of Chemical Industry  相似文献   

20.
Electrically conducting polyacrylonitrile (PAN)/polypyrrole (PPy) composite films were prepared by electrochemical polymerization of pyrrole in an insulating PAN matrix under various polymerization conditions and their electrical properties were studied. The conductivities of PAN/PPy composite films peeled off from the platinum electrode he lie in the range of 10?2–10?3 s/cm, depending on the preparation conditions: The conductivity increased with the concentrations of the electrolyte and the monomer, but it decreased with the polymerization temperature of pyrrole and the applied potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号