首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This work reports an in situ WAXS and SAXS investigation, under X‐ray synchrotron source radiation, on the structural evolution during solid‐state uniaxial deformation of poly(ethylene terephthalate) (PET) nanocomposites with 0.3 wt % of 3D nanoparticles [nanotitanium dioxide (TiO2) and nanosilica (SiO2)]. Good dispersion and average agglomerate sizes of nanoparticles of about 80 nm for both nanocomposites were revealed by transmission electron microscopic characterization. The influence of the nanofillers on the deformation‐induced phase's formation and their evolution along the stretching process were compared with respect to the neat PET. WAXS results indicated that the structural evolution of all samples passes through three main stages, with evolution of amorphous phase into mesophase, a rapid increase of molecular orientation, and the formation of a periodical mesophase (PM). The incorporation of the nanofillers promoted a higher fraction, and an earlier formation, of PM during stretching when compared with pure PET. Furthermore, the presence of TiO2 nanoparticles in the PET matrix resulted in the earliest formation and the highest amount of PM and the retardation of crack growth and bigger voids when compared with PET/SiO2 nanocomposite. A multiscale structural evolution mechanism is proposed to interpret these results. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39752.  相似文献   

2.
Sulfonated poly(ethylene terephthalate) (SPET)/montmorillonite nanocomposites were prepared by in situ intercalative polymerization. The microstructure, morphology, and properties of the nanocomposites were studied with wide‐angle X‐ray diffraction, transmission electron microscopy, atomic force microscopy, differential scanning calorimetry, and thermogravimetric analysis. The results indicated that an increase in the ? SO3Na content improved the dispersion of organically modified montmorillonite in the SPET ionomer matrix, and the dispersed layered silicates in the SPET matrix acted as nucleating agents in SPET crystallization processes and improved the thermal stability of SPET. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1150–1156, 2005  相似文献   

3.
The structural evolution of virgin and crosslinked polytetrafluoroethylene (PTFE) during stretching was studied by in situ synchrotron small‐angle X‐ray scattering (SAXS). Both yield and tensile stress of crosslinked PTFE increased with increasing crosslinking density. During stretching, for virgin PTFE, amorphous chains gradually turned to tensile direction at early stage, perpendicularly arranged lamellar stacks appeared at high strains (>140%). While for crosslinked PTFE, lamellar structure was observed even at lower strains; with increasing irradiation dose, the lamellar structure became obvious and the long period decreased. Four‐point SAXS patterns were observed only in 3000kGy‐dosed PTFE during deformation, which indicated that an alternately tilted lamella arrangement called herringbone structure was formed. Radiation dose induces crosslinked networks formed, which can carry part of local stress during deformation, resulting in the increase of yield and tensile stress. Crosslinking density is an important factor on structural evolution. In addition, a deformation mechanism of different crosslinked PTFE is proposed. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39883.  相似文献   

4.
Poly(ethylene glycol)–montmorillonite nanocomposites were prepared by both solution and melt intercalation methods with a range of polymer molecular weights and at a range of polymer loadings. Particular attention was given to the reliability of low‐angle X‐ray diffraction results for basal plane spacing and a sound correlation between three diffractometers was obtained (±0.005 nm). Expansion of the basal plane spacing from 1.23 nm to 1.82 nm by solution intercalation was independent of polymer molecular weight in the range 300–20 000. Furthermore, the clay expansion was independent of the method of intercalation; melt intercalation also gave d001 = 1.82 nm irrespective of polymer molecular weight. The maximum amount of polymer intercalated by clay and the maximum loading of clay that polymer can sustain were also studied for the determination of nanocomposite formulations. The confined polymer exerts a reduced effective density (670 kg m?3) in the galleries. Copyright © 2005 Society of Chemical Industry  相似文献   

5.
This work reports an in situ wide‐angle X‐ray scattering (WAXS) study of the structural evolution of PET with distinct initial morphologies during step uniaxial stretching in the solid state. Two types of samples were analyzed under synchrotron X‐ray radiation, namely quasi‐amorphous (QA) and semicrystalline (SC) (with 2D and 3D order). Results show that initially different QA morphologies evolve following the same stages: (i) stage I (before neck), at almost constant orientation level the amorphous phase evolves into mesophase; (ii) stage II (neck formation), there is a rapid increase of polymer orientation and the appearance of a periodical mesophase from the highly oriented mesophase; (iii) stage III (necking propagation), there is a leveling off of the average polymer orientation together with partial conversion of the periodical mesophase and mesophase into highly oriented amorphous. The behaviors of the two SC morphologies are completely distinct. A 2D order crystalline morphology evolves with stretching likewise the QA through three stages: (i) at early stages of deformation the polymer orientation remains unchanged while the amorphous phase amount increases slightly, stage I; (ii) in stage II, a fast increase of polymer orientation is accompanied by large formation of mesophase; and (iii) in stage III there is the level off of polymer orientation as the chains approach their finite extensibility and the 3D crystalline order is achieved. Evolution of SC sample with 3D crystalline order mainly features constant orientation increase together with mesophase increment. Structure deformation models are suggested. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
A new route based on reversibly crosslinking reactive extrusion is applied for the development of iPP/clay nanocomposites. Analysis of small‐angle X‐ray scattering (SAXS) reflections of isotactic polypropylene (iPP)/clay nanocomposites, prepared by two different mixing and chemical crosslinking methods (i.e., conventional and in situ), is presented and results are compared with preceding wide‐angle X‐ray diffraction (WAXD) results. It is shown that the presence of clay significantly affects the value of long spacing in iPP, as well as the coherence length of lamellar stacks. Results show that the size of the coherently diffracting nanodomains decreases in two stages, first rapidly and then slowly as a function of increasing clay content. This can be attributed to the influence of confined iPP lamellae under the effect of rising number of clay particles. The appearance of the γ‐crystalline form in the crosslinked iPP/clay nanocomposites is related with the difficulty in chain folding of iPP chains introduced by the chemical crosslinking process, as well as by the presence of clay particles. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
In this study, we fabricated poly(ethylene terephthalate) (PET)/clay, PET/poly(ethylene glycol‐co‐1,3/1,4‐cyclohexanedimethanol terephthalate) (PETG), and PET/PETG/clay nanocomposite plates and biaxially stretched them into films by using a biaxial film stretching machine. The tensile properties, cold crystallization behavior, optical properties, and gas and water vapor barrier properties of the resulting films were estimated. The biaxial stretching process improved the dispersion of clay platelets in both the PETG and PET/PETG matrices, increased the aspect ratio of the platelets, and made the platelets more oriented. Thus, the tensile, optical, and gas‐barrier properties of the composite films were greatly enhanced. Moreover, strain‐induced crystallization occurred in the PET/PETG blend and in the amorphous PETG matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42207.  相似文献   

8.
A poly(ethylene terephthalate) (PET)/montmorillonite clay nanocomposite was synthesized via in situ polymerization. Microscopic studies revealed that in an isothermal crystallization process, some crystallites in the nanocomposite initially were rod‐shaped and later exhibited three‐dimensional growth. The crystallites in the nanocomposite were irregularly shaped, rather than spherulitic, being interlocked together without clear boundaries, and they were much smaller than those of neat PET. With Avrami analysis, the isothermal crystallization kinetic parameters (the Avrami exponent and constant) were obtained. The rate constants for the nanocomposite demonstrated that clay could greatly increase the crystallization rate of PET. The results for the Avrami exponent were consistent with the observation of the rodlike crystallites in the PET/clay nanocomposite during the initial stage. Wide‐angle X‐ray scattering and Fourier transform infrared studies showed that, in comparison with neat PET, the crystal lattice parameters and crystallinity of the nanocomposite did not change significantly, whereas more defects may have been present in the crystalline regions of the nanocomposite because of the presence of the clay. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1381–1388, 2004  相似文献   

9.
The nanocomposite films comprising polymer blends of poly(vinyl alcohol) (PVA), poly(vinyl pyrrolidone) (PVP), poly(ethylene oxide) (PEO), and poly(ethylene glycol) (PEG) with montmorillonite (MMT) clay as nanofiller were prepared by aqueous solution casting method. The X‐ray diffraction studies of the PVA–x wt % MMT, (PVA–PVP)–x wt % MMT, (PVA–PEO)–x wt % MMT and (PVA–PEG)–x wt % MMT nanocomposites containing MMT concentrations x = 1, 2, 3, 5 and 10 wt % of the polymer weight were carried out in the angular range (2θ) of 3.8–30°. The values of MMT basal spacing d001, expansion of clay gallery width Wcg, d‐spacing of polymer spherulite, crystallite size L and diffraction peak intensity I were determined for these nanocomposites. The values of structural parameters reveal that the linear chain PEO and PEG in the PVA blend based nanocomposites promote the amount of MMT intercalated structures, and these structures are found relatively higher for the (PVA–PEO)–x wt % MMT nanocomposites. It is observed that the presence of bulky ester‐side group in PVP backbone restricts its intercalation, whereas the adsorption behavior of PVP on the MMT nanosheets mainly results the MMT exfoliated structures in the (PVA–PVP)–x wt % MMT nanocomposites. The crystallinities of the PEO and PEG were found low due to their blending with PVA, which further decreased anomalously with the increase of MMT concentration in the nanocomposites. The decrease of polymer crystalline phase of these materials confirmed their suitability in preparation of novel solid polymer nanocomposite electrolytes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40617.  相似文献   

10.
The polymer nanocomposite (PNC) films consisted of poly(ethylene oxide) (PEO) and sodium cations montmorillonite (MMT) clay were prepared by aqueous solution casting and direct melt press compounding techniques, whereas the films of PEO with trimethyl octadecyl ammonium cations organo‐modified montmorillonite (OMMT) clay were formed by melt pressed technique. The clay concentrations in the nanocomposites used are 1, 2, 3, 5, 10, and 20 wt % of the PEO weight. The X‐ray diffraction patterns of these nanocomposites were measured in the angular range (2θ) of 3.8–30°. The values of basal spacing d001 of MMT/OMMT, clay gallery width Wcg, d‐spacings of PEO crystal reflections d120 and d112, and their corresponding crystallite size L, and the peaks intensity I (counts) were determined for these nanocomposites. Results reveal that the nanocomposites have intercalated clay structures and the amount of intercalation increases with the increase of clay concentration. As compared to melt pressed PEO–MMT nanocomposites, the amount of clay intercalation is higher in aqueous solution cast nanocomposites. At 20 wt % MMT dispersion in PEO matrix, the solution cast PEO–MMT nanocomposite almost changes into amorphous phase. The melt press compounded PEO–OMMT films show more intercalation as compared to the PEO–MMT nanocomposites prepared by same technique. In melt pressed nanocomposites, the PEO crystalline phase significantly reduces when clay concentration exceeds 3 wt %, which is evidenced by the decrease in relative intensity of PEO principal crystalline peaks. The effect of interactions between the functional group (ethylene oxide) of PEO and layered sheets of clay on both the main crystalline peaks of PEO was separately analyzed using their XRD parameters in relation to structural conformations of these nanocomposites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39898.  相似文献   

11.
A novel mixer‐vane mixer which is based on elongation flow was used to prepare high‐density polyethylene (HDPE)/montmorillonite (MMT) nanocomposites without any additives. The effect of elongation flow on MMT intercalating in HDPE matrix was studied in terms of rotor speed and mixing time. X‐ray diffraction and transmission electron microscope analyses showed that exfoliated and intercalated nanostructures were obtained when the rotor speed was 40 and 50 rpm, and mixing time was 6 minutes. For all samples prepared by vane mixer, MMT layers showed fine intercalation in the nanocomposites. Differential scanning calorimetry and thermogravimetric analysis were used to study the thermal properties of the nanocomposites. The results showed that the addition of MMT can improve the crystallization of the HDPE. Tensile test revealed the relationships between the mechanical properties and process parameters. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42600.  相似文献   

12.
Polymer composites based on poly(methyl methacrylate) (PMMA)/carboxylic acid group functionalized multiwall carbon nanotubes (MWCNT) were prepared by the ex situ and in situ techniques with 0.05% loading by weight. Composite films were fabricated by solvent casting method. Electrical conductivity of the composites as well as of the neat PMMA polymer was measured in the temperature range 333 K to 423 K. Neat PMMA samples prepared by the same method showed complete insulating behavior. Ex situ technique leads to a lower value of percolation threshold. Infrared spectroscopy was used to analyze the effect of functionalization of MWCNT on the interfacial bonding of PMMA and MWCNT. Thermogravimetric analysis revealed that the maximum degradation temperature has been shifted to higher region for in situ composites compared to PMMA itself—and the ex situ composites indicated better thermal stability. X‐ray diffraction study of composites also indicates that in situ composites functionalization incorporated MWCNT particles in the polymer chain. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
The influence of montmorillonite (MMT) silicate layers on the semicrystalline morphology development of the poly(ethylene oxide) (PEO) matrix of PEO/MMT nanocomposites has been investigated by using X-ray diffraction, differential scanning calorimetry, light microscopy and time-resolved simultaneous small- and wide-angle X-ray scattering. The silicate layers act as nucleating agents for the crystallization of PEO, but at high contents also have a retarding effect on the crystal growth. In that case they are non-crystallisable barriers in the crystallization of the PEO matrix. The lamellar semicrystalline structures of pure PEO and the PEO/MMT nanocomposites are, however, identical.  相似文献   

14.
Poly(trimethylene terephthalate) (PTT)/polypropylene (PP) blend nanocomposites were prepared by melt mixing of PTT, PP, and organically modified clay. The phase morphologies of the PTT/PP nanocomposites and the distribution of the clay in the nanocomposites were investigated using scanning electron microscopy, transmission electron microscopy (TEM), and wide angle X‐ray diffraction. When PP is the dispersed phase, the domain size of the PP phase is decreased significantly with increasing the clay content from 0 to 5 wt %. In contrast, when PTT is the dispersed phase, the dimension of the PTT phase is a little larger in the presence of 2 wt % clay compared with the case of without clay. TEM observations indicate that the clay is mainly distributed at the phase interfaces along the phase borderlines. In addition, some intercalated clay tactoids (multilayer particles) are observed in the PTT matrix whereas no discernable clay particles can be found in the PP phase, indicating that the affinity of clay with PTT is higher than with PP. In the presence of 5 wt % PP‐graft‐maleic anhydride, the phase morphology is much finer, and most clay is exfoliated and distributed at the phase interfaces forming phase borderlines in polygonal shape. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Nanocomposites of poly(vinyl chloride), metallic oxides (copper, molybdenum, and zinc), and organically modified montmorillonite (O‐MMT) were prepared in a melt‐blending or intercalation‐in‐the‐molten state process, and their morphology was assessed with X‐ray diffraction and transmission electron microscopy. The formation of an intercalated/partially exfoliated hybrid microstructure was confirmed in every situation studied. The combustion and smoke emission properties were studied with cone calorimetry, limiting oxygen index, and thermogravimetry (TG) coupled with mass spectroscopy (MS). The results reveal that the metallic oxides had a significant effect on both the combustion properties and smoke suppression, whereas O‐MMT only affected these properties discretely. Little interaction was observed in the joint use of these additives. The results also confirm the anticipation of dehydrochlorination, reductive coupling, and benzene suppression mechanisms resulting from the presence of copper, molybdenum, and zinc metals; these were indicated by the increase in carbonaceous char residue and the significant reduction in benzene formation, in this case indicated in the TG/MS measurements obtained. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
We investigated the reactive melt blending of poly(ethylene terephthalate) (PET) and poly(trimethylene terephthalate) (PTT) in terms of the thermal properties and structural features of the resultant materials. Our main objectives were (1) to investigate the effects of the processing conditions on the nonisothermal melt crystallization and subsequent melting behavior of the blends and (2) to assess the effects of the blending time on the structural characteristics of the transreaction products with a fixed composition. The melting parameters (e.g., the melting temperature, melting enthalpy, and crystallization temperature) decreased with the mixing time; the crystallization behavior was strongly affected by the composition and blending time. Moreover, a significant role was played by the final temperature of the heating treatment; this meant that interchange reactions occurred during blending and continued during thermal analysis. The wide‐angle X‐ray diffraction patterns obtained under moderate blending conditions showed the presence of crystalline peaks of PET and PTT; however, the profiles became flatter after blending. This effect was more and more evident as the mixing time increased. Transesterification reactions between the polyesters due to longer blending times with an intermediate composition led to a new copolymer material characterized by its own diffraction profile and a reduced melting temperature. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Nanocomposites of blends of PMMA and poly(styrene‐co‐acrylonitrile) (SAN) with natural (PM) or organically modified montmorillonite clays (Cloisite 30B, 25A, and 15A) were prepared by solution mixing and the effect of clay on the phase separation behavior along with morphologies of nanocomposites was investigated. Nanocomposites containing clay C30B prepared from methyl ethyl ketone showed the noticeable decrease in the cloud points. None of the other nanocomposites showed the increase in the cloud point. Location of clay particles in the phase separated matrix is observed to be different depending on the type of clays and solvents. The lowest cloud point of nanocomposites containing C30B may arise from the good dispersion of C30B where Clay C30B may act as the nucleating agent inducing phase separation. Dynamic mechanical and thermal analyses support above observations. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
Fracture behavior of amorphous poly(ethylene terephthalate) (PET) films added multiwalled carbon nanotube (MWCNT) has been compared with that of the PET films added with carbon black (CB) to elucidate the effects of the large aspect ratio of MWCNT. Fracture toughness has been evaluated using the essential work of fracture tests. Evolution of the crazes has been analyzed by conducting time‐resolved small‐angle X‐ray scattering measurements during tensile deformation of the films at room temperature using synchrotron radiation. CB and MWCNT increased the fracture toughness of the PET film by increasing the plastic work of fracture. This resulted from the effects of the fillers to prevent the localization of deformation upon the crazes formed at earlier stages of tensile deformation and to retard the growth of the fibrils in the crazes to a critical length. The CB particles provided a number of sites where the crazes were preferably formed due to stress concentration. In the case of MWCNT, on the other hand, the widening of the crazes formed at earlier stages was suppressed due to the bridging effect arising from the large aspect ratio of MWCNT. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

19.
Poly(ethylene terephthalate) (PET)/clay, PET/poly(ethylene glycol‐co‐1,3/1,4‐cyclohexanedimethanol terephthalate) (PETG), and PET/PETG/clay nanocomposites were fabricated using the twin‐screw extrusion technique. The spherulitic morphologies, thermomechanical, mechanical, and gas‐barrier properties, as well as the effect of clay on the transparency of the resulting nanocomposites were identified. The clay induced the heterogeneous nucleation of the nanocomposites during the cold crystallization process, thereby increasing the crystallinities and melting temperatures of the resulting nanocomposites. The incorporation of clay increased the storage moduli, Young's moduli, impact strengths, and barrier properties of the PET, PETG, and PET/PETG blend. Regarding the optical transparency, the inclusion of clay can make the crystallizable PET matrix crystalline opaque. However, the amorphous PETG maintained its transparency. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39869.  相似文献   

20.
Poly(vinyl alcohol)/poly(ethylene glycol) (PVA/PEG) copolymer was prepared using casting technique. The obtained PVA/PEG thin films have been irradiated with gamma rays with doses ranging from 1.5 to 20 Gy. The resultant effect of gamma irradiation on the thermal properties of PVA/PEG has been investigated using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The onset temperature of decomposition To and activation energy of thermal decomposition Ea were calculated, results indicating that the PVA/PEG thin film decomposes in one main weight loss stage. Also, the gamma irradiation in dose range 4–12 Gy led to a more compact structure of PVA/PEG copolymer, which resulted in an improvement in its thermal stability with an increase in the activation energy of thermal decomposition. The variation of transition temperatures with gamma dose has been determined using DTA. The PVA/PEG thermograms were characterized by the appearance of an endothermic peak due to melting of crystalline phase. In addition, structural property studies using X‐ray diffraction and infrared spectroscopy were performed on both nonirradiated and irradiated samples. Furthermore, the transmission of the PVA/PEG samples and any color changes were studied. The color intensity (E was greatly increased with increasing the gamma dose and was accompanied by a significant increase in the blue and green color components. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号