首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Poly(vinylidene fluoride) (PVDF) nanocomposites with different loadings of multiwalled carbon nanotubes (MWNT) were prepared by melt‐compounding technique. A homogeneous dispersion of MWNT throughout PVDF matrix was observed on the cryo‐fractured surfaces by scanning electron microscopy. Thermogravimetric analysis results indicated that the thermal stability of neat PVDF was improved with the incorporation of MWNT. Dynamic mechanical analysis showed a significant improvement in the storage modulus over a temperature range from ?125 to 75°C with the addition of MWNT. The melt‐rheological studies illustrated that incorporating MWNT into PVDF matrix resulted in higher complex viscosities (|η*|), storage modulus (G′), loss modulus (G″), and lower loss factor (tan δ) than those of neat PVDF. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
    
The crystal transformation and thermomechanical properties of melt‐intercalated poly(vinylidene fluoride) (PVDF)/clay nanocomposites are reported in this study. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to study the thermal properties of PVDF and its nanocomposites with various clay concentrations. The incorporation of clay in PVDF results in the formation of β‐form crystals of PVDF. DSC study of melting behavior suggested the presence of only α‐phase crystals in neat PVDF and both α‐ and β‐phase crystals in the nanocomposite. This conclusion was corroborated by findings from Fourier‐transform infrared (FTIR) spectroscopy and X‐ray diffraction (XRD). Dynamic mechanical analysis (DMA) indicated significant improvements in storage modulus over a temperature range of 20–150 °C. The coefficient of thermal expansion (CTE) decreases with increasing clay loading. Copyright © 2004 Society of Chemical Industry  相似文献   

3.
    
An increase in the dielectric constant (800 ± 15; 100f ≤ 104 Hz) of PVDF without a coresponding increase in the dielectric loss is reported. This is realized by preparing sandwich structures composed of CNF/PVDF composite layers and a pure PVDF interlayer. The influence of the interlayer thickness on the dielectric properties is investigated. It is shown that a 30 µm interlayer is sufficient to prevent formation of the conductive network in the sandwich structures that would result in lower loss. It is demonstrated that with better CNF dispersion, a further increase of the dielectric constant and a lower loss can be obtained simultaneously. The sandwich approach thus leads to nanocomposites with enhanced dielectric constants while maintaining low loss.

  相似文献   


4.
In this study, we report the melting behavior of poly(vinylidene fluoride) (PVF2) annealed in a differential scanning calorimeter. PVF2 annealed under isothermal conditions often shows double or triple melting endotherms depending on the annealing temperature (Ta) and the heating rate. The lower melting peak temperature increases as Ta increases. When the annealing time is varied, there is a systematic increase in the size of the lower endotherms. This suggests that a portion of the main endothermic response is due to reorganization during the scan. Annealing PVF2 not only increases the degree of crystallinity, but also improves the crystal perfection. The ability of an annealing sample to reorganize decreases as the annealing time increases. However, an additional third melting peak appears when PVF2 is annealed at 140°C for a sufficiently long time. The existence of this peak suggests that more than one kind of distribution of crystal perfection may occur when PVF2 is quenched from the melt into liquid nitrogen and subsequently annealed.  相似文献   

5.
    
Nanocomposites of poly(vinylidene fluoride) (PVDF) and multi‐walled carbon nanotubes (MWCNTs) were prepared through melt blending in a batch mixer (torque rheometer equipped with a mixing chamber). The morphology, rheological behavior and electrical conductivity were investigated through transmission electron microscopy, dynamic oscillatory rheometry and the two‐probe method. The nanocomposite with 0.5 wt% MWCNT content presented a uniform dispersion through the PVDF matrix, whereas that with 1 wt% started to present a percolated network. For the nanocomposites with 2 and 5 wt% MWCNTs the formation of this nanotube network was clearly evident. The electrical percolation threshold at room temperature found for this system was about 1.2 wt% MWCNTs. The rheological percolation threshold fitted from viscosity was about 1 wt%, while the threshold fitted from storage modulus was 0.9 wt%. Thus fewer nanotubes are needed to approach the rheological percolation threshold than the electrical percolation threshold. Copyright © 2010 Society of Chemical Industry  相似文献   

6.
    
Nanocomposites based on poly(vinylidene fluoride) were prepared with montmorillonite by solution blending. The samples were characterized by small angle X‐ray scattering, wide angle X‐ray diffraction, Fourier transform infrared spectroscopy, and differential scanning calorimetry. Different crystallization conditions, that is, evaporation of the solvent and coprecipitation with two different antisolvents, H2O or supercritical CO2 (scCO2), were tested and their influence on the resulting structure and morphology of the samples were studied. Coprecipitation with scCO2 induced an ordinate crystalline framework and an intercalated morphology of clay, with a consequent large improvement in modulus. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
    
A novel solvent casting preparation technique utilizing three variants of poly(vinylidene fluoride) (PVDF) to achieve a thermal cut off and a self regulation effect at a low applied voltage is reported in this study. The positive temperature coefficient (PTC) composites were prepared by dissolving PVDF in 1‐methyl‐2‐pyrrolidone (NMP) solvent, blending with Vulcan® XC72 carbon black (CB) filler, crosslinking with vinyl trimethoxysilane (VTMOS) and quenching in water. All composites displayed a highly macrovoidal structure that promoted a PTC effect when subjected to a thermal expansion effect via an electrical current. Subsequently the current was cut off and self regulation behavior was exhibited. Kynar® 761A PVDF resulted in the strongest PTC effect, and displayed temperature regulation at around 100°C which may be attributed to the highly semi crystalline nature and the larger molecular weight of this polymer in comparison with the other PVDF composites studied. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
The influence of crystallization temperature on the melting behaviour and the morphology of poly(vinylidene fluoride) (PVF2) has been investigated. The DSC endotherms of PVF2 crystallized from the melt show at least two peaks. The peak areas depend on the thermal history of the samples and the heating scan rate. The area of the first peak was found to increase as the crystallization temperature or the scan rate increased. The double peak configuration was attributed to a melting–recrystallization process. Electron microscopy supports these results, for which only one type of lamella was found in the spherulitic structure.  相似文献   

9.
熔融模压制备PVDF/石墨烯复合材料及其性能研究   总被引:1,自引:0,他引:1  
以聚偏二氟乙烯(PVDF)树脂为基体、石墨烯为填料,通过高速混合机混合作用,经分散剂、润湿剂、表面活性剂、相容剂等组分协同作用,使石墨烯在PVDF中分散均匀,然后经熔融模压成型,制得PVDF/石墨烯复合材料。利用扫描电子显微镜和透射电子显微镜研究了复合材料的微观形貌,并研究了石墨烯含量、制备工艺、助剂及PVDF树脂牌号对复合材料介电性能、导电性能和导热性能的影响。结果表明,采用的助剂体系和高速混合、熔融模压的制备方法能使石墨烯以微片的形态均匀地分散在PVDF树脂基体中,形成良好的功能网络结构;复合材料介电常数、电导率、介电损耗、体积电阻率和导热系数均随石墨烯含量增加而增大;当石墨烯质量分数达到2.0%左右时,复合材料的介电和导电特性均发生突变,向高介电、高导电材料转变,而当石墨烯质量分数达到5.0%左右时,复合材料开始向高导热材料转变;制备工艺和PVDF树脂牌号对复合材料热、电性能的影响则相对较小。  相似文献   

10.
    
Nanocomposite thin films (NCTF) of low‐dimensional ZnSe and copper doped ZnSe integrated poly(vinylidene fluoride) (PVDF) polymer were developed via simple solution casting method. Herein, ZnSe and Cu:ZnSe nanoparticles were synthesized through the chemical reduction technique. The obtained low‐dimensional nanoparticles and NCTFs were characterized by XRD, SEM/EDS, TEM, and FTIR analysis. Room temperature dielectric and ferroelectric characteristics of PVDF/ZnSe flexible NCTF exhibited superior dielectric and ferroelectric behavior with a high coercive field of 15.6 V. Whereas, the dielectric and ferroelectric characteristics were greatly diminished in the PVDF/Cu:ZnSe flexible NCTF was due to the conducting behavior of copper ions at the interface of the polymer network. These results indicated that the PVDF/ZnSe flexible NCTF will be a potential candidate for advanced electrical applications and device fabrication. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44983.  相似文献   

11.
    
Stable layers of nearly monodisperse spheres of β‐polymorphic poly(vinylidene fluoride) with iridescent properties are prepared. The colloidal crystalline arrays (CCAs) were characterized by optical microscopy, differential scanning calorimetry (DSC), and FT‐IR spectroscopy. FT‐IR spectroscopic and wide‐angle X‐ray scattering (WAXS) studies revealed a β‐polymorphic PVF2 structure, the DSC study showed that the level of crystallinity in the CCA was much higher than that in the melt‐crystallized sample, and UV‐visible spectroscopy showed extinction peaks at 323 and 510 nm in the CCAs. The β‐polymorphic PVF2 structure, along with the optical extinction properties of these CCAs, raises the prospect of their application in optical filters and/or piezoelectric sensors.

Optical micrograph of PVF2 CCA films cast on glass substrates.  相似文献   


12.
以聚偏氟乙烯(PVDF)树脂为基体,天然鳞片石墨(FG)、碳纤维(CF)为填料,采用熔融共混法制备了PVDF/FG/CF复合导热材料,并研究了FG、CF含量及其改性对复合材料导热性能和力学性能的影响。结果表明,复合材料的热导率随FG含量的增加而增大,力学性能随着FG含量的增加而降低;CF的加入提高了复合材料的力学性能,但热导率略有降低;对CF进行表面氧化处理将使得复合材料的热导率以及力学性能有所提高,当CF含量为5 %、FG含量为50 %时,复合材料的热导率为11.4 W/(m·K),拉伸强度为48 MPa,断裂伸长率为11 %。  相似文献   

13.
利用非溶剂相转化法(NIPS),通过在聚偏氟乙烯(PVDF)铸膜液中加入聚二甲基硅氧烷(PDMS),制备了PDMS/PVDF共混疏水微孔膜,并研究了凝胶浴组成(水/乙醇)对铸膜液凝胶动力学、膜形貌、疏水性及力学性能的影响。结果表明,随着凝胶浴中乙醇百分含量由零增加至100 %时,PDMS/PVDF共混膜的断面上指状孔基本消失,海绵状孔结构贯穿断面;当凝胶浴中乙醇含量为100 %时,PDMS与PVDF发生分相;膜表面疏水性能增加,水接触角达到139.68 °;弹性模量、拉伸强度、断裂伸长率分别由(48.06±4.20)、(2.82±0.15) MPa、(92.90±2.53) %下降至(15.70±2.83)、(0.72±0.13) MPa、(15.47±1.63) %。  相似文献   

14.
    
Dense and uniform vinylidene fluoride (VDF) oligomer thin films with a highly polar β phase were prepared for the first time by a low‐cost and scalable solution casting approach, after treatments of substrate surface functionalization and hot‐pressing. Introducing hydrated salt in the precursor solution effectively promoted the ferroelectric β phase. The VDF oligomer thin films obtained with short molecular chains exhibited high crystallinity and high remnant polarization (91 mC m?2), which is larger than both the polymer and copolymer counterpart films. The reasons for the observed low dielectric constant at low electric field, despite its larger polarization at high field, and the relatively high coercive field are discussed on the basis of the distinct structural characteristics of VDF oligomers. The low polar bulky end‐groups and difficulties in kink formation and propagation may result in the observed low dielectric constant at low electric field and the high coercive field. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
锂电池用聚偏氟乙烯粘结剂   总被引:1,自引:0,他引:1  
锂电池用粘结剂是制造锂电池的重要材料之一,可直接影响其性能.介绍了锂电池用粘结剂应具备的特性、种类及存在的问题;叙述了日本专利中,偏氟乙烯作为锂电池用粘结剂和用偏氟乙烯与第二及第三单体的共聚改性、聚偏氟乙烯与其他聚合物共混改性等的方法.  相似文献   

16.
    
Three different experimental techniques were used to study structural phase transitions in melt‐spun poly(vinylidene fluoride) fibers, which were produced with different process parameters and processed in the draw‐winding process at different temperatures and draw ratios. The fibers are examined with the help of wide‐angle X‐ray diffraction at elevated temperatures, differential scanning calorimetry with stochastic temperature modulation, and dynamic mechanical analysis. An oriented mesophase and deformed crystal structures can be observed in all fibers and assigned to the mechanical stress occurring in the processes. Furthermore, several phase transitions during melting and two mechanical relaxation processes could be detected. The observed transitions affect the crystal geometry, the orientation distribution, anisotropic thermal expansion, and the mechanic response of the fiber samples. The relaxation processes can be related with an increasing amount of crystalline β‐phase in fibers drawn at different temperatures. The detailed information about phase transitions and the related temperatures are used to produce fibers with an extended amount of β‐phase crystallites, which are responsible for piezoelectric properties of the material. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
采用浸没沉淀相转化法制备了聚二甲基硅氧烷/聚偏氟乙烯/聚四氟乙烯(PDMS/PVDF/PTFE)三元共混微孔膜,并用于20 g/L NaCl水溶液的膜蒸馏脱盐实验。通过扫描电子显微镜观察以及接触角、膜孔隙率和膜平均孔径分析,研究了PTFE含量对膜结构与性能的影响。结果表明,随着PTFE含量的增加,共混微孔膜断面的指状孔逐渐被海绵状取代,平均孔半径由0.234 μm增加到0.354 μm,膜孔隙率由53.4 %增加到81.3 %;膜下表面与水接触角从118.52 °增加到131.11 °;膜蒸馏过程中通量逐渐增加,截留率先稳定后降低,PTFE含量为40 %(质量分数,下同) 时达最大,为99.99 %,此时膜蒸馏通量达16.60 kg/(m2·h)。  相似文献   

18.
    
ABSTRACT

In this work, boron nitride (BN) and exfoliated boron nitride nanosheets (BNNs) were employed as thermal conductive fillers to improve the thermal conductivity of poly(vinylidene fluoride) (PVDF) composites. Results suggested that the thermal conductivity of PVDF increases significantly with an increase in loading content of functional fillers. When the mass ratio of fillers was more than 30 wt%, the heat conduction network was formed. BNNs were capable of forming denser heat conduction network as per the SEM observations. In this scenario, PVDF/BNNs composites demonstrated excellent thermal conductivity. For example, the thermal conductivity of PVDF/BNNs (60/40) was 0.82 W/mK, which was 2.4 times and 17% higher than that of neat PVDF and PVDF/BN (60/40) counterpart, respectively. The non-isothermal crystallization of corresponding composite was studied by Mo method. Combining with XRD results, both BN and BNNs acted as the nucleation agents but had no effect on crystal forms.  相似文献   

19.
In this work, flexible three phase composite films were prepared with surface functionalized multi‐walled carbon nanotubes (f‐MWCNTs) and bismuth ferrite (BiFeO3;BFO) particles embedded into the poly(vinylidene fluoride) (PVDF) matrix via solution casting technique. The properties and the microstructure of prepared composites were investigated using an impedance analyzer and field emission scanning electron microscope. The micro‐structural study showed that the f‐MWCNTs and BFO particles were dispersed homogeneously within the PVDF matrix, nicely seated on the floor of the f‐MWCNTs separately. The dielectric measurement result shows that the resultant composites with excellent dielectric constant (≈96) and relatively lower dielectric loss (<0.23 at 100 Hz). Furthermore, the percolation theory is explored to explain the dielectric properties of the resultant composites. It says that the percolation threshold of fMWCNTs = 0.9 wt % and the enhancement of the dielectric constant of the composite was also discussed. In addition, the remnant polarization of the un‐poled PVDF‐BFO‐f‐MWCNTs composites (2Pr ~1.34 µC/cm2 for 1.1 wt % of f‐MWCNTs) is also improved. These three phase composites provide a new insight to fabricate flexible and enhanced dielectric properties as a promising application in modern electrical and electronic devices. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46002.  相似文献   

20.
    
Nanocomposites based on poly(vinylidene fluoride) (PVDF) and exfoliated graphite nanoplate (xGnP) were prepared by solution precipitation method. The resulting nanocomposites were investigated with respect to their structure and properties by scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction, and dynamic mechanical analysis. Both SEM and TEM examinations confirmed the good dispersion of xGnP in the PVDF matrix. The nonisothermal crystallization behavior of the PVDF/xGnP nanocomposites was studied using DSC technique at various cooling rates. The results indicated that the xGnPs in nanometer size might act as nucleating agents and accelerated the overall nonisothermal crystallization process. Meanwhile, the incorporation of xGnP significantly improved the storage modulus of the PVDF/xGnP nanocomposites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号