共查询到20条相似文献,搜索用时 15 毫秒
1.
Efficient wound odor removal by β‐cyclodextrin functionalized poly (ε‐caprolactone) nanofibers 下载免费PDF全文
Polymer‐cyclodextrin (CD) composite nanofibers, by virtue of the hollow cavities and abundant hydroxyl groups present in CDs, have tremendous potential in a variety of biomedical applications. However, in most cases, especially in aliphatic polyesters, polymer chains thread readily into CD cavities, therefore its potential has not yet been fully realized. Herein, we report the formation of poly(ε‐caprolactone) (PCL)/β‐CD functional nanofibers by electrospinning their mixture from chloroform/N,N‐dimethylformamide (60 : 40). The fiber diameters of the neat PCL and β‐CD functionalized fibers were measured from the images obtained from a scanning electron microscope and were found to be about 500 nm. The efficiency of wound odor absorbance by these composite fibers was studied using a simulated wound odor solution, consisting of butyric and propionic acids in ethanol. Immersion tests indicated that even under less than ideal test conditions, the nanofibers containing β‐CDs were very efficient in masking the odor. The odor masking capability of the β‐CD functionalized PCL nanofibers were further confirmed by thermogravimetric analyses and GC observations, with the former method showing unique degradation patterns. The PCL/β‐CD nanocomposites, by virtue of having their β‐CD cavities free and unthreaded by PCL, could potentially be an ideal substrate for removing wound odors through formation of inclusion compounds with odorants, while providing an ideal environment for the wound to heal. These results suggest tailoring polymer‐CD nanostructures for specific applications in wound odor absorbance, surface grafting of chemical moieties, and vehicles for drug delivery, as examples. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42782. 相似文献
2.
Poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) nanofibers with the fiber diameter of 100–150 nanometers were fabricated by electrospinning. PVA/PAA nanofibers were crosslinked by heat‐induced esterification and resulting nanofiber mats insoluble in water. α‐Amylase was covalently immobilized onto the PVA/PAA nanofiber surfaces via the activation of amine groups in the presence of 1,1′‐carbonyldiimidazole. The immobilized α‐amylase has more resistance to temperature inactivation than that of the free form and showed maximum activity at 50°C. pH‐dependent activities of the free and immobilized enzymes were also investigated, and it was found that the pH of maximum activity for the free enzyme was 6.5, while for the optimal pH of the immobilized enzyme was 6.0. Reuse studies demonstrated that the immobilized enzyme could reuse 15 times while retaining 81.7% of its activity. Free enzyme lost its activity completely within 15 days. Immobilized enzyme lost only 17.1% of its activity in 30 days. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
3.
We studied the effect of nanofiber uniformity on electrospinning due to the charging of added ionic salts, as compared to the droplet current nonadded ionic salts and the charge‐to‐mass ratio of a highly conducting liquid. Various ionic salt concentrations were investigated. For an ionic salt concentration of 0.01 mol %, an applied electric field of 15 kV, and a spinning distance of 15 cm, the experimental results show that uniform nanofibers that did not contain any beads were synthesized with an optimal ionic salt concentration, when the convective current was two orders of magnitude higher than the nonadded ionic salt droplet current. The obtained fibers were uniform, with diameters of around 70 nm. We were able to produce these uniform nanofibers by controlling the balance between two opposing factors during electrospinning, by increasing the number of charge carriers and decreasing the viscosity of the solution. The effect of the ionic salts on the morphology of the electrospun nanofibers was investigated with field‐emission scanning electron microscopy. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1388–1393, 2005 相似文献
4.
Electrospinning of poly(lactic‐co‐glycolic acid) (PLGA) in chloroform or 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP) was investigated, focusing on its solution parameters, to develop nonwoven biodegradable nanofibrous structures for tissue engineering. PLGA nanofibers were obtained by electrospinning of 15 wt % PLGA solution and the resulting average fiber diameters were varied with the range of 270–760 nm, depending on solution property. When small amounts of benzyl triethylammonium chloride (BTEAC) was added to the PLGA/chloroform solution, the average diameter was decreased from 760 to 450 nm and the fibers were densely amounted in a straight shape. In addition, the average fiber diameter (270 nm) of nanofibers electrospun from polar HFIP solvent was much smaller than that (760 nm) of nanofibers electrospun from nonpolar chloroform solvent. Therefore, it could be concluded that conductivity or dielectric constant of the PLGA solution was a major parameter affecting the morphology and diameter of the electrospun PLGA fibers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1214–1221, 2006 相似文献
5.
Improved catalytic activity by catalase immobilization using γ‐cyclodextrin and electrospun PCL nanofibers 下载免费PDF全文
Nanofibrous structures are promising for biocatalyst immobilization due to their large surface area which facilitates the enzyme attachment, stability, ease of separation, and fine porous structure. There is limited research available on the change in enzyme activity following interaction with cyclodextrin. In this study, catalase enzyme was immobilized into nanofibrous structures by various techniques, with and without γ‐CD addition, and the enzymatic activity of catalase was evaluated. In addition, catalase‐γ‐CD complex containing PEO polymer solution was electrospun in between PCL nanofibrous layers as a newly developed technique. The enzyme immobilized nanofibrous structures were characterized by SEM, XRD, and FT‐IR analysis methods. Among all the activity tests, best enzyme activity was recorded with catalase‐γ‐CD physical mixture encapsulated PCL nanofibrous layers. Moreover, the test results indicated that the use of cyclodextrin in immobilization process considerably improves the catalytic activity of the enzyme. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44404. 相似文献
6.
Boontharika Thapsukhon Napaphat Thadavirul Pitt Supaphol Puttinan Meepowpan Robert Molloy Winita Punyodom 《应用聚合物科学杂志》2013,130(6):4357-4366
The main objective of this work has been to study the effects of copolymer microstructure, both chemical and physical, on the microporosity, in vitro hydrolytic degradability and biocompatibility of electrospun poly(l ‐lactide‐co‐ε‐caprolactone), PLC, copolymer tubes for potential use as absorbable nerve guides. PLC copolymers with L : C compositions of 50 : 50 and 67 : 33 mol % were synthesized via the ring‐opening copolymerization of l ‐lactide (L) and ε‐caprolactone (C) at 120°C for 72 h using stannous octoate (tin(II) 2‐ethylhexanoate) and n‐hexanol as the initiating system. Electrospinning was carried out from solution in a dichloromethane/dimethylformamide (7 : 3 v/v) mixed solvent at room temperature. The in vitro hydrolytic degradation of the electrospun PLC tubes was studied in phosphate buffer saline over a period of 36 weeks. The microporous tubes were found to be gradually degradable by a simple hydrolysis mechanism leading to random chain scission. At the end of the degradation period, the % weight retentions of the PLC 50 : 50 and 67 : 33 tubes were 15.6% and 70.2%, respectively. Pore stability during storage as well as cell attachment and proliferation of mouse fibroblast cells (L929) showed the greater potential of the PLC 67 : 33 tubes for use as temporary scaffolds in reconstructive nerve surgery. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4357–4366, 2013 相似文献
7.
Seung Hwan Lee Seong Yun Kim Jae Ryoun Youn Dong Gi Seong Seung Yong Jee Jin Il Choi Jae Rock Lee 《Polymer International》2010,59(2):212-217
Continuous poly(amide‐imide) nanofibers were fabricated using a novel electrospinning method with rotating and re‐collecting cylindrical collectors. The nanofilaments were modified using various post‐treatments, i.e. glycerol treatment and thermal imidization under tension, for possible application as high‐performance reinforcements. Morphological and mechanical properties of continuous poly(amide‐imide) nanofibers prepared by the electrospinning process and various post‐treatments were measured. Severe adhesion between individual nanofibers within fiber bundles was inhibited through surface treatment of the electrospun nanofiber bundles by spraying with glycerol. The morphological and mechanical properties of the continuous poly(amide‐imide) nanofibers and thermal stability were improved using thermal imidization at high temperature under tension. The morphological and mechanical properties of the continuous electrospun nanofibers were improved significantly by post‐treatments after electrospinning because uniform and complete thermal imidization occurred through the core region of the nanofibers. Copyright © 2009 Society of Chemical Industry 相似文献
8.
Koji Nakane Toshiki Hotta Takashi Ogihara Nobuo Ogata Shinji Yamaguchi 《应用聚合物科学杂志》2007,106(2):863-867
Polyvinyl alcohol (PVA)‐nanofibers‐immobilized lipase were formed by electrospinning. The specific surface area of the nanofiber (5.96 m2/g) was about 250 times larger than that of PVA‐film‐immobilized lipase (0.024 m2/g). The PVA‐nanofibers‐immobilized lipase were used as the catalyst for the esterification of (Z)‐3‐hexen‐1‐ol (leaf alcohol) with acetic acid in hexane. The activity of the nanofiber is equivalent to that of commercially available immobilized lipase (Novozym‐435). The ester conversions of the nanofibers, Novozym‐435, the film and lipase powder reached 99.5% at 5 h, 100% at 5 h, 11.5% at 6 h, and 81.1% at 5.75 h, respectively. The nanofibers‐immobilized lipase showed higher activity for the esterification than the film‐immobilized lipase and lipase powder, probably because it has high specific surface area and high dispersion state of lipase molecules in PVA matrix. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 相似文献
9.
The direct electrochemical copolymerization of pyrrole (Py) and ε‐caprolactone at various monomer ratios was carried out by potentiostatic methods in nitromethane. Characterizations of the novel copolymer were based on scanning electron microscopy, differential scanning calorimetry, thermal gravimetrical analysis, cyclic voltammetry, electrochemical impedance spectroscopy, Fourier transform infrared spectra, and elemental analysis studies. The results showed that the electrochemical oxidation of Py and ε‐caprolactone comonomers generated true copolymers rather than blends of the two homopolymers. The electrical conductivity of the copolymers increased with the amount of polypyrrole in the copolymer between the value of 8.2 S/cm and 0.6 S/cm. A probable mechanism of copolymerization was proposed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
10.
Antimicrobial nanofibers of poly(?‐caprolactone) (PCL) were prepared by electrospinning of a PCL solution with small amounts of silver‐loaded zirconium phosphate nanoparticles (nanoAgZ) for potential use in wound dressing applications. The electrospun nanoAgZ‐containing PCL nanofibers were characterized using field emission scanning electron microscopy, energy dispersive X‐ray spectrum (EDX), X‐ray diffraction analysis (XRD), antimicrobial tests, and biocompatibility tests. The SEM, EDX, and XRD investigations of the electrospun fibers confirmed that silver‐containing nanoparticles were incorporated and well dispersed in smooth and beadless PCL nanofibers. The results of the antimicrobial tests showed that these fibers have maintained the strong killing abilities of Ag+ existed in the nanoAgZ against the tested bacteria strains and discoloration has not been observed for the nanofibers. To test the biocompatibility of nanofibers as potential wound dressings, primary human dermal fibroblasts (HDFs) were cultured on the nanofibrous mats. The cultured cells were evaluated in terms of cell proliferation and morphology. The results indicated that the cells attached and proliferated as continuous layers on the nanoAgZ‐containing nanofibers and maintained the healthy morphology of HDFs. The earlier results suggested that nanoAgZ‐containing fibers may be expected to be a novel material for potential wound dressing applications because of the significant bacteriostatic activities and good biocompatibility. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 相似文献
11.
The development of surface microstructure with specific features in electrospun nanofibers has attracted more and more attention in recent years. In this article, a common biological polyester, poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) was electrospinning into nanofibers with “coral‐like” surface microstructure by a conventional‐electrospinning setup. The effect of the process parameters on the microstructure in electrospun nanofibers were investigated via a series of experiments. The formation mechanism of this feature structure and cytotoxicity assays of PHBV membrane were also discussed. The water contact angle of the electrospun PHBV membrane was higher than that of the PHBV cast film due to a very‐rough fiber surface including porous beads when PHBV was electrospun from the concentration of 4 wt %. Because of special hole shape and size distribution, the physical structure of surface of PHBV electrospun fibers offered it special properties, such as specific‐surface area, hydrophilic–hydrophobic properties, adhesion properties of cells and biological substances, etc. The demonstrated method of form coral structure would contribute to the areas such as filtration, sensor, tissue engineering scaffolds, and carriers of drugs or catalysis. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
12.
BACKGROUND: Stimuli‐sensitive materials show enormous potential in the development of drug delivery systems. But the low response rate of most stimuli‐sensitive materials limits their wider application. We propose that electrospinning, a technique for the preparation of ultrafine fibrous materials with ultrafine diameters, may be used to prepare materials with a fast response to stimuli. RESULTS: Poly[styrene‐co‐(maleic sodium anhydride)] and cellulose (SMA‐Na/cellulose) hydrogel nanofibers were prepared through hydrolysis of precursor electrospun poly[styrene‐co‐(maleic anhydride)]/cellulose acetate (SMA/CA) nanofibers. In the presence of diethylene glycol, the SMA/CA composite nanofibers were crosslinked by esterification at 145 °C, and then hydrolyzed to yield crosslinked SMA‐Na/cellulose hydrogel nanofibers. These nanofibers showed better mechanical strengths and were pH responsive. Their water swelling ratio showed a characteristic two‐step increase at pH = 5.0 and 8.2, with the water swelling ratio reaching a maximum of 27.6 g g?1 at pH = 9.1. CONCLUSION: The crosslinked SMA‐Na hydrogel nanofibers supported on cellulose showed improved dimensional stability upon immersion in aqueous solutions. They were pH responsive. This new type of hydrogel nanofiber is a potential material for biomedical applications. Copyright © 2009 Society of Chemical Industry 相似文献
13.
The phase behavior of blends containing Poly(N‐1‐alkyl itaconamic acids) (PNAIA) with Poly(2‐vinylpyrindine) (P2VPy) and Poly(4‐vinylphenol) (P4VPh) were analyzed by Diferential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FTIR). Miscibility over the whole range of compositions is observed in both systems. All the blends show thermograms exhibiting distinct single glass transition temperatures (Tg), which are intermediate to those of the pure components. The Calorimetric Analysis using Gordon Taylor, Couchman, and Kwei treatments allows conclusion that interactions between the components is favorable to the miscibility. FTIR analysis of the blends suggests that the driving force for miscibility is hydrogen bonding formation. The variation of the absorptions of the carbonyl groups of PNAIA and the hydroxyl groups of P4VPh allows one to attribute the miscibility to weak acid base like interactions. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1245–1250, 2002; DOI 10.1002/app.10453 相似文献
14.
Praewpanit Nuamcharoen Takaomi Kobayashi Pranut Potiyaraj Makoto Shiozaki 《Polymer International》2020,69(8):719-727
Poly(vinylidene fluoride) (PVDF) nanofibers were fabricated via electrospinning with an investigation of various ratios of binary solvents at different temperatures. The amount of acetone influenced the morphology. Scanning electron microscopy showed a PVDF membrane composed of smooth and unblemished fibers without beads and dark spots with small diameters of 201 ± 54 nm at a dimethylformamide‐to‐acetone ratio of 4:6. The temperature of pre‐thermal treatment from room temperature to 120 °C was investigated to promote the β crystalline phase in electrospun PVDF nanofibers. The result was characterized using Fourier transform infrared (FTIR) spectroscopy and X‐ray diffraction (XRD). PVDF solution prepared at 80 °C was used to increase the β crystalline phase of the electrospun PVDF nanofibers due to the transformation of α to β phase occurring during the spinning process and also bead‐free PVDF nanofibers were obtained. Differential scanning calorimetry revealed crystallization behavior corresponding with that determined using FTIR spectroscopy and XRD. Therefore, the solvent proportion and pretreatment temperature were observed to affect ultrafine nanofiber and crystalline structure of PVDF, respectively. © 2020 Society of Chemical Industry 相似文献
15.
Antimicrobial nanocomposites and electrospun coatings based on poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) and copper oxide nanoparticles for active packaging and coating applications 下载免费PDF全文
Jinneth Lorena Castro Mayorga María José Fabra Rovira Luis Cabedo Mas Gloria Sánchez Moragas José María Lagarón Cabello 《应用聚合物科学杂志》2018,135(2)
Active biodegradable poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) melt mixed nanocomposites and bilayer structures containing copper oxide (CuO) nanoparticles were developed and characterized. The bilayer structures consisted of a bottom layer of compression molded PHBV3 (3% mol valerate) coated with an active electrospun fibers mat made with CuO nanoparticles and PHBV18 (18% valerate) derived from microbial mixed cultures and cheese whey. The results showed that the water vapor permeability increased with the CuO addition while the oxygen barrier properties were slightly enhanced by the addition of 0.05 wt % CuO nanoparticles to nanocomposite films but a negligible effect was registered for the bilayer structures. However, the mechanical properties were modified by the addition of CuO nanoparticles. Interestingly, by incorporating highly dispersed and distributed CuO nanoparticles in a coating by electrospinning, a lower metal oxide loading was required to exhibit significant bactericidal and virucidal performance against the food‐borne pathogens Salmonella enterica, Listeria monocytogenes, and murine norovirus. The biodisintegration tests of the samples under composting conditions showed that even the 0.05% CuO‐coated structures biodegraded within 35 days. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45673. 相似文献
16.
Rapid fabrication of poly(ε‐caprolactone) nanofibers using needleless alternating current electrospinning 下载免费PDF全文
Caitlin Lawson Andrei Stanishevsky Manikandan Sivan Pavel Pokorny David Lukáš 《应用聚合物科学杂志》2016,133(13)
Poly(ε‐caprolactone) ( PCL) biopolymer nanofibers and micro‐fibers have been fabricated for the first time at the rates up to 14.0 g per hour using a needleless and collectorless alternating current electrospinning technique. By combining the ac‐voltage, “green” low toxicity glacial acetic acid (AA) as the solvent and sodium acetate (NaAc) as an additive, beadless PCL fibers with diameters tunable from 150 nm to 2000 nm, varying surface morphology and degree of self‐bundling are obtained. In this new approach, the addition of NaAc plays a crucial role in improving the spinnability of PCL solution and fiber morphology. NaAc reveals the concentration‐dependent effect on charge transfer and rheological properties of the PCL/AA precursor, which results in broader ranges of spinnable PCL concentrations and ac‐voltages suitable for rapid manufacturing of PCL‐based fibers. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43232. 相似文献
17.
Quercetin and curcumin in nanofibers of polycaprolactone and poly(hydroxybutyrate‐co‐hydroxyvalerate): Assessment of in vitro antioxidant activity 下载免费PDF全文
Lívia da Silva Uebel Daiane Angelica Schmatz Suelen Goettems Kuntzler Cristiana Lima Dora Ana Luiza Muccillo‐Baisch Jorge Alberto Vieira Costa Michele Greque de Morais 《应用聚合物科学杂志》2016,133(30)
Polymeric nanofibers are materials that can be used as scaffolds in tissue engineering. Quercetin and curcumin are antioxidants because of scavenge free radicals and chelate metal ions properties, protecting tissues of lipid peroxidation. The objective of this study was to develop a scaffold with potential antioxidant activity that was produced from nanofibers consisting of polycaprolactone (PCL) and a blend of PCL/poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHB‐HV) with the addition of quercetin or curcumin as the bioactive compound. Curcumin and quercetin were integrated into the solution at a concentration of 3%. The electrospun nanofibers were characterized using calorimetry and thermogravimetric analysis, and the addition of bioactive compounds did not alter the thermal properties of the biomaterial. The antioxidant activity of scaffolds with the active compounds was evaluated by hydrate 2,2‐diphenyl‐2‐picrylhydrazyl (DPPH) and 2,2′‐azinobis (3‐ethylbenzothiazoline‐6‐sulfonic acid) diammonium salt (ABTS) methods. The scaffolds with PCL and PCL/PHB‐HV blend with quercetin exhibited higher antioxidant activity than curcumin with both methods. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43712. 相似文献
18.
The electrospinning behavior of a block copolymer of trimethylene carbonate (TMC) and ε‐caprolactone dissolved in N,N‐dimethylformamide (DMF) and methylene chloride (MC) was studied. The effects of the blended solvent volume ratio, concentration, voltage, and tip–collector distance (TCD) on the morphology of the electrospun fibers were investigated by scanning electron microscopy. The results indicated that the diameter of the electrospun fibers decreased with a decreasing molar ratio of MC to DMF, but beads formed gradually. With a decreasing concentration of the solution, the fiber diameter decreased; at the same time, beads also appeared and changed from spindlelike to spherical. A higher voltage and larger TCD favored the formation of smaller diameter electrospun fibers. The results of differential scanning calorimetry and X‐ray diffraction showed that the crystallinity and melting point of the electrospun fibers decreased when increasing the TMC content in the copolymer. Compared with the corresponding films, the crystallinity and melting point of the electrospun fibers were obviously increased. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1462–1470, 2006 相似文献
19.
ABSTRACT: Electrospun nanofibrous hydrogel membranes have been gaining significant importance due to the combination of unique physical properties of nanofibers and biocompatibility of hydrogels. Thus, they are considered as potential candidates for medical textile applications. This study deals with electrospinning of poly(vinyl alcohol) (PVA) hydrogel nanofibrous membranes. The chemical crosslinking of PVA with proportionate quantities of 1,2,3,4 butanetetracarboxylic acid (BTCA) was undertaken to form hydrogel structures. Cross‐linked membranes were characterized by scanning electron microscopy, FT‐IR and thermogravimetric analysis, water swelling, and durability tests. FT‐IR analysis demonstrated the formation of ester linkages between PVA and BTCA and thermogravimetric analysis showed that crosslinking improved the thermal stability of the nanofibrous structure. Furthermore, the results indicated that crosslinking with BTCA improved water stability of PVA membranes and the nanofibrous structure was preserved after water treatment. It is envisaged that use of BTCA as a cross‐linker to form hydrogel nanofibers could be a practical and a promising method for medical textile applications, especially for wound dressings given its nontoxicity and immiscibility with polymer solutions. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
20.
Electrospun fibrous membranes have been used frequently in biomedical applications, but their simultaneous use as antibacterial agents and in the prevention of cell adhesion on repaired tendons after injury has not been investigated. In this study, silver‐nanoparticle (SN)‐loaded poly(L ‐lactide) (PLLA) fibrous membranes were prepared by the electrospinning of SNs into PLLA fibers. Micrograph results showed that these membranes were composed of electrospun fibers and that the fibers were incorporated with SNs. From the results of X‐ray diffraction and thermogravimetry, we concluded that the SNs were physically mixed into the fibers at the desired content. The mechanical properties were not significantly changed. The preliminary antibacterial effects on Staphylococcus epidermidis and Staphylococcus aureus and the synergistic antiproliferative effects of the SN‐loaded PLLA fibrous membranes were observed. Taken together, these results demonstrate that SNs can be directly loaded onto a biodegradable PLLA fibrous membrane via electrospinning to achieve proper material properties with preliminary potential as antibacterial antiadhesion barriers for tendon injury. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献