共查询到20条相似文献,搜索用时 11 毫秒
1.
Enhanced adsorption and recovery of Pb(II) from aqueous solution by alkali‐treated persimmon fallen leaves 下载免费PDF全文
Persimmon fallen leaves were employed to prepare a renewable and low‐cost biosorbent named as NPFL. Effects of initial pH, contact time, initial Pb(II) concentration, coexisting metal ions, and ionic strength on adsorption of Pb(II) from aqueous solution by NPFL were studied in detail. Enhanced removal capacity of NPFL toward Pb(II) was observed, and the maximum adsorption capacity was evaluated as 256 mg g?1 by Langmuir modeling calculation. The fast adsorption process and the well‐fitted kinetics data with pseudo‐second‐order model indicated that chemisorption is the main rate‐limiting step for the adsorption process. NPFL had superior adsorption selectivity for Pb(II) from aqueous solution with coexisting metal ions. Characterization of NPFL and adsorption mechanism (electrostatic attraction, ion exchange, and chelation) were performed using XRD, SEM‐EDS, FT‐IR, XPS, and TGA. The results suggested that NPFL could be utilized as a potential candidate for the preconcentration of Pb(II) recovery and its removal in practice. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43656. 相似文献
2.
In this study, four biorefinery technical lignins were used to synthesize lignin–phenol–formaldehyde (LPF) resin adhesives with a proposed formulation that was designed based on accurate analysis of the active sites in lignin with 31P nuclear magnetic resonance (NMR). The properties of the LPF resin adhesives and the plywoods prepared with them were tested. The structural features and curing behavior of the LPF resin adhesives were thoroughly investigated by solution‐ and solid‐state 13C NMR. Results indicated that the proposed formulation exhibited favorable adaptability for all four of these technical lignins for synthesis of LPF resin adhesives. High‐performance plywood with low emissions of formaldehyde could be successfully prepared with the synthesized LPF resin adhesives. All the LPF resin adhesives exhibited similar structure and curing behavior with the commercial phenol–formaldehyde (CPF) resin adhesive. However, the LPF resin adhesives showed relatively higher curing temperatures as compared with the CPF resin adhesive. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42493. 相似文献
3.
Competitive adsorption of acid dyes from aqueous solution on diethylenetriamine‐modified chitosan beads 下载免费PDF全文
The interaction between two dyes (AO7 and AG25) during adsorption was studied in detail with diethylenetriamine‐modified chitosan beads (CTSN‐beads) as the adsorbent. Results indicate that the adsorption capacities and rates were directly related to the molecular size of the dye. The adsorption capacity and rate of AO7 could be greatly weakened by interaction with AG 25 during adsorption, which has a larger molecular size. The adsorption followed the pseudo‐second‐order kinetic equation and Freundlich model gave a satisfying correlation with the equilibrium data both in the single and binary component system. Adsorption could be divided into three stages, each controlled by different mechanisms. Temperature experiments showed high temperature was beneficial to the mass transfer of dyes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41168. 相似文献
4.
Bio‐sorbents from cassava waste biomass and its performance in removal of Pb2+ from aqueous solution
Jinheng Shi Hongsheng Luo Dingshu Xiao Jiwen Hu Ganwei Zhang Yinhui Li Baofeng Lin Xingquan Liang Yuanyuan Tu 《应用聚合物科学杂志》2014,131(2)
Cassava xanthogenate and their derivatives, as adsorbents to remove Pb2+ from aqueous solution, are studied based upon orthogonal factorial design. The structural and thermal properties, adsorption performance as well as equilibrium‐kinetics are comprehensively investigated with multiple tools, such as Fourier transform infrared spectroscopy, thermal gravimetric analysis (TGA), and UV–visible spectrum technique. The influence of multiple parameters, including initial Pb2+ concentrations, compositions, pH values, and temperatures, on the adsorption performance is emphasized. The crosslinked cassava xanthogenate serves as an effective bio‐sorbent to remove Pb ions from aqueous solution, allowing regeneration in dilute acid solution. The findings in this study are beneficial for the development of adsorbents from cassava waste biomass and may contribute to environment recovery in “nature‐to‐nature” manner. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39780. 相似文献
5.
Thiourea modified hyper‐crosslinked polystyrene resin for heavy metal ions removal from aqueous solutions 下载免费PDF全文
A hyper‐crosslinked resin chemically modified with thiourea (TM‐HPS) was synthesized, characterized, and evaluated for the removal of heavy metal ions (Pb2+, Cd2+, and Cu2+) from aqueous solutions. The structural characterization results showed that a few thiourea groups were grafted on the surface of the resin with a big BET surface area and a large number of narrow micropores. Various experimental conditions such as pH, contact time, temperature, and initial metal concentration of the three heavy metal ions onto TM‐HPS were investigated systematically. The results indicated that the prepared resin was effective for the removal of the heavy metal ions from aqueous solutions. The isotherm data could be better fitted by Langmuir model, yielding maximum adsorption capacities of 689.65, 432.90, and 290.69 mg/g for Pd2+, Cd2+, and Cu2+, respectively. And the adsorption kinetics of the three metal ions followed the pseudo‐second‐order equation. FTIR and XPS analysis of TM‐HPS before and after adsorption further revealed that the adsorption mechanism could be a synergistic effect between functional groups and metal ions and electrostatic attraction, which may provide a new insight into the design of highly effective adsorbents and their potential technological applications for the removal of heavy metal ions from aqueous solutions. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45568. 相似文献
6.
Dissolution and utilization of chitosan in a 1‐carboxymethyl‐3‐methylimidazolium hydrochloride ionic salt aqueous solution 下载免费PDF全文
1‐Carboxymethyl‐3‐methylimidazolium hydrochloride ([IMIM–COOH]Cl), a new ionic salt, is proposed as a green, promising solvent for dissolving chitosan. However, because of the optimal dosage of chitosan dissolved in [IMIM–COOH]Cl, a 12 wt % [IMIM–COOH]Cl aqueous solution was selected as an optimum solvent system for dissolving chitosan. The structures of the original and regenerated chitosan were characterized by Fourier transform infrared spectroscopy and X‐ray diffraction analysis. Scanning electron microscopy was used to visualize the morphological features of the reconstituted chitosan membranes. Meanwhile, the absorbance, tensile strength, and breaking elongation of the chitosan membranes were measured. The results reveal that 10–11 wt % was an optimal chitosan concentration for preparing membranes. Furthermore, the adsorption capacity for Cu(II) ion of the chitosan membranes was increased with the chitosan concentration decreased from 12 to 8 wt %. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41965. 相似文献
7.
Shinji Kanehashi Kota Yokoyama Risa Masuda Takashi Kidesaki Kazukiyo Nagai Tetsuo Miyakoshi 《应用聚合物科学杂志》2013,130(4):2468-2478
Novel organic solvent‐free bio‐based epoxy resin for coating was prepared from cashew nut shell liquid which is one of renewable resources. The epoxy coating was fabricated by the reaction between amine compounds and epoxy cardanol prepolymer (ECP). The drying, physical, and thermal properties of the epoxy were investigated and compared with those of the commercial cashew coating. The ECP was synthesized by thermal polymerization under the various conditions. Based on the FT‐IR analysis, hydroxyl and carbonyl groups were generated, and viscosity increased with increasing heating temperature and time. On the other hand, the NMR analysis showed decrease in the degree of unsaturation in the side group of cardanol. Based on these results, the polymerization of the ECP could be autoxidized in the unsaturated group in the side chains. The drying time until harden dry of the ECP coating took about 2.5 h at room temperature, which is faster than that of the commercial cashew coating. This is because that the curing of ECP coating was based on the prepolymer (i.e., high molecular weight) and crosslink reaction between epoxy and amine groups. The ECP coating was rubbery state due to the flexible side chains of cardanol. Furthermore, the ECP coating improved chemical stability compared with the commercial cashew. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2468–2478, 2013 相似文献
8.
In this study, we aimed to investigate the removal of basic dyes, including Safranin T (ST), Nile Blue A (NBA), and Brilliant Cresyl Blue (BCB), from aqueous solution with a sulfonated phenol–formaldehyde resin. This sulfonated resin was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The adsorption properties of this resin were investigated under different adsorption conditions with different initial dye concentrations, contact times, and pH values. The adsorption equilibrium data were analyzed with Langmuir and Freundlich models. The adsorption behaviors of ST, NBA, and BCB onto the sulfonated resol‐type phenol–formaldehyde resin were better described by the Freundlich model. The adsorption capacities of the sulfonated resol resin for ST, NBA, and BCB decreased in the following order: NBA > BCB > ST. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
9.
Alin Alexandru Enache Laurent David Jean‐Pierre Puaux Ionut Banu Grigore Bozga 《应用聚合物科学杂志》2018,135(16)
In this study, we investigated the kinetics of chitosan hydrogel formation from aqueous chitosan solutions with sodium hydroxide (NaOH) as the coagulant. Two sets of experiments were performed, one in a parallelepiped cell and the other with cylindrical chitosan solution extrudates. The coagulation occurred by the neutralization of the protonated amino groups (? ) present in the chitosan chains, with the kinetics being controlled by NaOH transport toward the gelification zone. In this study, we confirmed the appropriateness of Fick's second law to describe NaOH transport, considering the instantaneous reaction between the NaOH and ? groups. The experimental data were used to determine the NaOH diffusion coefficient in gels having different chitosan concentrations. The diffusion coefficient values obtained from the cylindrical coagulation data were lower than those determined for linear coagulation because of the influences of transport geometry and gel structure, respectively. Accordingly, in fiber coagulation calculations, it is recommended to use diffusion coefficient values determined from cylindrical coagulation studies. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46062. 相似文献
10.
Acrylated epoxidized soybean oil as a styrene replacement in a dicyclopentadiene‐modified unsaturated polyester resin 下载免费PDF全文
Nonvolatile and nonhazardous acrylated epoxidized soybean oil (AESO) was investigated as a replacement for hazardous styrene in a commercial unsaturated polyester (UPE) resin [a mixture of styrene and a dicyclopentadiene (DCPD)‐modified UPE (DCPD–UPE)]. DCPD–UPE was prepared from ethylene glycol, diethylene glycol, maleic anhydride, and DCPD. Mixtures of AESO and DCPD–UPE [AESO–(DCPD–UPE) resins] were found to be homogeneous, easily pourable solutions at room temperature. The glass‐fiber‐reinforced composites from the AESO–(DCPD–UPE) resins were comparable or even superior to those from the mixture of styrene and DCPD–UPE in terms of the flexural and tensile strengths. The viscoelastic properties of the cured AESO–(DCPD–UPE) resins and the corresponding glass‐fiber‐reinforced composites were characterized by dynamic mechanical analysis. The viscosities and pot lives of the AESO–(DCPD–UPE) resins as a function of the temperature were studied. The curing mechanism of the AESO–(DCPD–UPE) resins is discussed. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46212. 相似文献
11.
This work has demonstrated that the novel chitosan derivative, synthesized by phase transition and grafting diethylenetriamine, has a great potential for the adsorption of acid dyes from aqueous solutions. Four acid dyes with different molecular sizes and structures were used to investigate the adsorption performance of diethylenetriamine‐modified chitosan beads (CTSN‐beads). Results indicated that the adsorption of dyes on CTSN‐beads was largely dependent on the pH value and controlled by the electrostatic attraction. In addition, the adsorption rate (AO10 > AO7 > AR18 > AG25) and adsorption capacities (AO7 > AR18 > AO10 > AG25) were directly related to the molecular size of the dye and the amount of the sulfonate groups on the dye molecules. The equilibrium and kinetic data fitted well with the Langmuir–Freundlich and pseudo‐second‐order model. Furthermore, thermodynamic parameters indicated that the adsorption processes occurred spontaneously and higher temperature made the adsorption easier. The reuse tests indicated that the CTSN‐beads can be recovered for multiple uses. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4090–4098, 2013 相似文献
12.
Wood has limitations in strength because of its biostructural defects, including vessels. To overcome this limitation, composite materials can be innovated by breaking wood down into cellulose and lignin and reassembling them for bio‐originating strong structural materials. In this study, an ecofriendly resin was developed that was suitable for cellulose‐based composites. To overcome the low dimensional stability of lignin and to increase its interactions with cellulose, it was blended with poly(vinyl alcohol) (PVA). The PVA–lignin resin was characterized with scanning electron microscopy, Fourier transform infrared spectroscopy, thermal analysis, mechanical tensile testing, and lap‐shear joint testing. The adhesion properties of the PVA–lignin resin increased with increasing PVA content. PVA played the role of synthetic polymer and that of linker between the cellulose and lignin, like hemicellulose does in wood. The PVA–lignin resin exhibited a high miscibility, mechanical toughness, and good adhesion properties for nanocellulose composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46655. 相似文献
13.
Production and isolation of chitosan from Aspergillus terreus and application in tin(II) adsorption 下载免费PDF全文
Li‐Chun Cheng Tzung‐Shian Wu Jian‐Wen Wang Szu‐Han Wu Mei‐Hui Chung Yi‐Ming Kuo Cheng‐Hsien Tsai 《应用聚合物科学杂志》2014,131(12)
Fed‐batch fermentation was used for biomass and fungal chitosan production by Aspergillus terreus (BCRC 32068) grown in a potato dextrose agar medium. The polysaccharides were extracted by an alkali–acid treatment, and structural investigations by X‐ray diffraction, Fourier transform infrared analysis, and viscosity and thermal analysis were done. A high level of chitosan was extracted from A. terreus; this implied that it was feasible to produce chitosan from industrial waste mycelia. Fungal chitosan derived from A. terreus showed the highest adsorption capacity for Sn(II). The order of Sn(II) adsorption capacity for these chitosanaceous materials was Fungal chitosan > Chitin > Biomass. Fungal chitosan derived from A. terreus was well correlated with Langmuir's isotherm model. The maximum capacity for Sn(II) sorption deduced from the use of the Langmuir isotherm equation was 303 mg/g; this was significantly higher than that of A. terreus. Fungal chitosan is an easy and cost‐effective material for the abatement of pollution. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40436. 相似文献
14.
Shao‐Jung Wu Tzong‐Horng Liou Chao‐Hsien Yeh Fwu‐Long Mi Tsung‐Kuan Lin 《应用聚合物科学杂志》2013,127(6):4573-4580
Porous chitosan–tripolyphosphate beads, prepared by the ionotropic crosslinking and freeze‐drying, were used for the adsorption of Cu(II) ion from aqueous solution. Batch studies, investigating bead adsorption capacity and adsorption isotherm for the Cu(II) ion, indicated that the Cu(II) ion adsorption equilibrium correlated well with Langmuir isotherm model. The maximum capacity for the adsorption of Cu(II) ion onto porous chitosan–tripolyphosphate beads, deduced from the use of the Langmuir isotherm equation, was 208.3 mg/g. The kinetics data were analyzed by pseudo‐first, pseudo‐second order kinetic, and intraparticle diffusion models. The experimental data fitted the pseudo‐second order kinetic model well, indicating that chemical sorption is the rate‐limiting step. The negative Gibbs free energy of adsorption indicated a spontaneous adsorption, while the positive enthalpy change indicated an endothermic adsorption process. This study explored the adsorption of Cu(II) ion onto porous chitosan–tripolyphosphate beads, and used SEM/EDS, TGA, and XRD to examine the properties of adsorbent. The use of porous chitosan–tripolyphosphate beads to adsorb Cu(II) ion produced better and faster results than were obtained for nonporous chitosan–tripolyphosphate beads. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
15.
Aafia Tehrim Min Dai Xiange Wu Malik Muhammad Umair Imran Ali Muhammad Ahsan Amjed Rong Rong Sheikh Fahad Javaid Changsheng Peng 《应用聚合物科学杂志》2021,138(27):50655
Waste cigarette filters (CFs) were recycled and modified with a nontoxic and low-cost citric acid (CA). The modified CFs were employed in the adsorptive removal of methylene blue (MB) dye from aqueous medium. The influence of pH, contact time, initial dye concentration, and adsorbent dose on adsorption of MB dye was evaluated. The adsorption studies were conducted by employing linear and nonlinear Langmuir and Freundlich isotherm models. The adsorption capacity of CF obtained through linear and nonlinear Langmuir model were 88.02 and 94 mg g−1, which improved up to 163.93 and 168.81 mg g−1, respectively, after the introduction of functional groups in CF-CA. The adsorption kinetics data were well fitted by pseudo-second order kinetics with coefficient of regression (R2) closed to unity. The removal efficiency of CF-CA was 97% at equilibrium time of 4 h. Desorption studies indicated that CF-CA could be regenerated by using HCl (0.1 M) and desorption efficiency was up to 82% upon second cycle of reusability experiment. This study proposed a green and economical use of recycled CFs in dyes wastewater treatment, simultaneously reducing the negative environmental impact due to their improper disposal. 相似文献
16.
Contamination of water resources by toxic heavy metals has significant impacts on environmental and human health. Their removal from aqueous media is essential to ensure water sustainability and to provide safe freshwater availability to population. Electrospun chitosan (CS) nonwoven mats are efficient at removing heavy metals from aqueous media. However, they suffer from low permeability and low-mechanical strength. They are also unable to remove contaminants in a nonselective way. A bilayer sorbent media made of a porous phosphorylated cellulose substrate covered by electrospun CS nanofibers was developed to overcome those weaknesses. The hydrophilic composite shows good water permeability and mechanical strength with appropriate thermal and chemical characteristics. Adsorption tests with Cd(II) indicate that pseudo-second order and Langmuir models best fitted experimental data, with a maximum adsorption capacity of 591 mg/g at 25°C. Adsorption with multielement samples containing Cr(VI), Cu(II), Cd(II), and Pb(II) also reveal their capability to remove them in a selective way. This mechanically resistant, hydrophilic, and permeable adsorbent media was able to capture both cationic and anionic metallic contaminants. 相似文献
17.
《应用聚合物科学杂志》2018,135(12)
Poly(furfuryl alcohol) bioresin (PFA) was synthesized and utilized through two distinct alloying strategies. It was crosslinked by a bismaleimide (BMI) via a Diels–Alder (DA) reaction. The novel PFA–BMI polyadduct network was spectrally, thermally, and thermo‐mechanically characterized and its thermally repeatable self‐healing behavior was visually established. The network showed a high pyrolytic thermostability (char yield ∼51% at 600 °C). PFA was also used for modification of epoxy–novolac resin (EP). EP hybrid resins containing 5, 10, and 15 wt % of PFA were cured by a polyamine hardener. Despite of different curing mechanisms of the two resins, PFA had no effect on EP curing behavior as revealed by differential scanning calorimetry, which proved homogeneous formation of the thermosets. PFA at the composition of 15 wt % improved tensile properties and toughness of EP, so that it almost doubled tensile modulus and elongation at break. However, PFA slightly deteriorated flexural properties of EP. PFA also decreased Tg of EP, with a maximum decrease of 22 °C. Besides, PFA disfavored initial thermostability of EP, but improved its pyrolytic char yield. In conclusion, PFA can be beneficial from smart materials to toughen hybrid epoxy thermosets with potential applications in composites, adhesives, and surface coatings. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45921. 相似文献
18.
The surface‐modified β‐Si3N4 whiskers were used as inorganic fillers to reinforce dental resin (Bis‐GMA/TEGDMA) matrix with filler level ranging from 0 to 60 wt %. The experimental results indicated that the fracture strength of the composites increased from 79.85 to 139.8 MPa with increasing the whiskers loading. The compressive strength, elastic modulus, and rockwell hardness all increased monotonously with increasing filler level. Furthermore, thermal cycling did not decrease the fracture strength of the composites. Moreover, the composites showed good biocompatibility to support MG63 cells adhesion and proliferation. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40692. 相似文献
19.
Mariana Alves Leite Dutra Nívia do Nascimento Marques Men de Sá Moreira de Souza Filho Rosangela de Carvalho Balaban 《应用聚合物科学杂志》2021,138(30):50725
The intent of this study was to evaluate the ability of low-cost polyacrylamide/starch hybrid hydrogels in removing organic pollutants from wastewater, using phenol as a model compound, besides of investigating the adsorption/desorption behavior as a function of hydrogels composition. The results indicated that the hydrogel with the lowest amount of starch and crosslinking agent exhibited the maximum phenol adsorption capacity, 21 mg g−1. The adsorption isotherm data were described by Langmuir and Freundlich adsorption isotherm models. According to linear regression analysis, the Freundlich isotherm model was the best fit among the isotherm models for the adsorption process. Furthermore, desorption study revealed a minimum of about 60% of phenol release, indicating reusability to wastewater treatment. 相似文献
20.
This study examines the isothermal treatment of poly(3‐hydroxybutyrate) (PHB) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) powders and films. The PHB and PHBV crystallinities were determined using X‐ray diffractometry, and shown to increase with temperature (130–150°C) and then decreased from 55% to 45% at 180°C. The crystal morphology of crystal planes (101) and (111) became sharp at a high temperature. The weight average molecular weight (Mw) of PHB decreased from 1,028,000 to 41,800 g/mol when heated at 180°C for 30 min. The molecular weight of PHB decreased more rapidly than that of PHBV with time. No peak signal was observed in gel permeation chromatography after heating at 150°C because the solubility of PHB changed with crystallinity. The thermal behaviors of PHB and PHBV were analyzed by differential scanning calorimetry and thermogravimetric analysis. The roughness, contact angle, and surface morphology of PHB and PHBV films were also measured to determine the surface properties. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3659–3667, 2013 相似文献