首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biodegradable polymer blends based on poly(lactic acid) (PLA) and poly[(butylene succinate)‐co‐adipate] (PBSA) were prepared with a laboratory internal mixer. An epoxy‐based, multifunctional chain extender was used to enhance the melt strength of the blends. The morphology of the blends was observed with field emission scanning electron microscopy. The elongational viscosities of the blends, with and without chain extender, were measured with a Sentmanat extensional rheometer universal testing platform. The blends with chain extender exhibited strong strain‐hardening behavior, whereas the blends without chain extender exhibited only weak strain‐hardening behavior. Measurements of the linear viscoelastic properties of the melts suggested that the chain extender promoted the development of chain branching. The results show that PBSA contributed to significant improvements in the ductility of the PLA/PBSA blends, whereas the chain extender did not have a significant effect on the elastic modulus and strain at break of the blends. The combined blending of PLA with PBSA and the incorporation of the chain extender imparted both ductility and melt strength to the system. Thus, such an approach yields a system with enhanced performance and processability. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
Both poly(lactic acid) (PLA) and poly(butylene adipate‐co‐terephthalate) (PBAT) are fully biodegradable polyesters. The disadvantages of poor mechanical properties of PLA limit its wide application. Fully biodegradable polymer blends were prepared by blending PLA with PBAT. Crystallization behavior of neat and blended PLA was investigated by differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and wide angle X‐ray diffraction (WAXD). Experiment results indicated that in comparison with neat PLA, the degree of crystallinity of PLA in various blends all markedly was increased, and the crystallization mechanism almost did not change. The equilibrium melting point of PLA initially decreased with the increase of PBAT content and then increased when PBAT content in the blends was 60 wt % compared to neat PLA. In the case of the isothermal crystallization of neat PLA and its blends at the temperature range of 123–142°C, neat PLA and its blends exhibited bell shape curves for the growth rates, and the maximum crystallization rate of neat PLA and its blends all depended on crystallization temperature and their component. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Blends of two biodegradable and semicrystalline polymers, poly(L ‐lactic acid) (PLLA) and poly(butylene succinate‐co‐adipate) (PBSA), were prepared by solvent casting in different compositions. The miscibility, morphology, and thermal behavior of the blends were investigated using differential scanning calorimetry and optical microscopy. PLLA was found to be immiscible with PBSA as evidenced by two independent glass transitions and biphasic melt. Nonisothermal crystallization measurements showed that fractionated crystallization behavior occurred when PBSA was dispersed as droplets, evidenced by multiple crystallization peaks at different supercooling levels. Crystallization and morphology of the blends were also investigated through two‐step isothermal crystallization. For blends where PLLA was the major component, different content of PBSA did not make a significant difference in the crystallization mechanism and rate of PLLA. For blends where PBSA was the major component, the crystallization rate of PBSA decreased with increasing PLLA content, while the crystallization mechanism did not change. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

4.
The vital differences between the use of untreated starch and gelatinized starch in blends with poly(butylene succinate) (Bionolle) were thoroughly examined in this study. The melting temperature decreased slightly with increasing dosages of untreated and gelatinized starch. The added starch perhaps tended to disrupt the intermolecular hydrogen bonding within the Bionolle matrix. On the other hand, a large increase in the crystallinity was seen with the addition of starch. Starch appeared to play a nucleating role in the blends. The trend of the glass‐transition temperature decreasing with the starch level was similar to the trend of the melting temperature. For the same starch content, the glass‐transition temperature showed some variations. For blends containing a certain amount of gelatinized starch, the thermal stability remained to a certain degree but continued to decrease. This was ascribed to the relatively low heat stability of starch. As for the mechanical properties, a significant increase in the tensile strength (up to 2 times) was observed when untreated starch was replaced with gelatinized starch in the blends. Similarly, the tear strength increased up to 1.5 times if gelatinized starch was employed. Apparently, the gelatinization of starch was efficiently achieved for promoting its compatibility with Bionolle. In all cases, the mechanical properties of Bionolle blended with gelatinized starch were better than those of Bionolle blended with untreated starch. A morphological investigation provided evidence in support of these findings. This relatively low‐cost gelatinization approach provides an alternative to a high‐cost compatibilizer approach for improving the performance of biodegradable blends. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 257–264, 2005  相似文献   

5.
Biodegradable polymer blends of poly(butylene succinate) (PBS) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) were prepared with different compositions. The mechanical properties of the blends were studied through tensile testing and dynamic mechanical thermal analysis. The dependence of the elastic modulus and strength data on the blend composition was modeled on the basis of the equivalent box model. The fitting parameters indicated complete immiscibility between PBS and PHBV and a moderate adhesion level between them. The immiscibility of the parent phases was also evidenced by scanning electron observation of the prepared blends. The thermal properties of the blends were studied through differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DSC results showed an enhancement of the crystallization behavior of PBS after it was blended with PHBV, whereas the thermal stability of PBS was reduced in the blends, as shown by the TGA thermograms. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42815.  相似文献   

6.
Miscibility and crystallization behaviors of biodegradable poly(butylene succinate‐co‐butylene terephthalate) (PBST)/poly(hydroxyl ether biphenyl A) (phenoxy) blends were investigated with various techniques in this work. PBST and phenoxy are completely miscible as evidenced by the single composition‐dependent glass transition temperature over the entire blend compositions. Nonisothermal melt crystallization peak temperature is higher in neat PBST than in the blends at a given cooling rate. Isothermal melt crystallization kinetics of neat and blended PBST was studied and analyzed by the Avrami equation. The overall crystallization rate of PBST decreases with increasing crystallization temperature and the phenoxy content in the PBST/phenoxy blends; however, the crystallization mechanism of PBST does not change. Moreover, blending with phenoxy does not modify the crystal structure but reduces the crystallinity degree of PBST in the PBST/phenoxy blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
The prediction of the morphology of ternary polymer blends requires a good knowledge of the values of the three interfacial tensions. We selected three polymers, either biobased or biodegradable, polyamide (PA), poly[(butylene adipate)‐co‐terephthalate] (PBAT) and polylactide (PLA), and we accurately measured their interfacial tensions using the retraction method, varying the molar mass or inverting the phases. The following values of interfacial tension were obtained: γPBAT/PLA = 3.3 ± 0.7 mN m?1, γPA/PLA = 5.6 ± 0.3 mN m?1 and γPBAT/PA = 3.0 ± 0.4 mN m?1. These values were used to calculate the spreading coefficients giving rise to two negative coefficients and one coefficient close to zero. Ternary blends with various compositions, two different levels of viscosity for PBAT and different processing conditions were prepared. There was a very good agreement between the predictions of the spreading theory, when using the values of interfacial tension of the right order of magnitude, and the observed morphologies, whatever the polymer serving as a matrix. When PLA or PBAT was chosen as the matrix, the ternary blend morphology was composed of composite droplets, presenting a partial wetting morphology, dispersed in the polymer matrix. This morphology was observed whatever the composition, the viscosity of the PBAT phase and the processing conditions. A further calculation of the free energy confirmed this morphology. The formation process of this semi‐encapsulated morphology was observed during blending. © 2018 Society of Chemical Industry  相似文献   

8.
Biodegradable poly(butylene succinate‐co‐butylene adipate) (PBSA)/multiwalled carbon nanotubes (MWCNTs) nanocomposites were prepared via a simple melt‐compounding method at low MWCNTs contents. Scanning and transmission electron microscopy observations revealed a relatively nice dispersion of MWCNTs throughout the PBSA matrix. Both the nonisothermal and isothermal melt crystallizations of PBSA were enhanced significantly in the nanocomposites relative to neat PBSA because of the presence of MWCNTs; however, the crystal structure of PBSA remained unchanged. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
The reactive blends were prepared by the blending of poly(lactic acid) (PLA) with poly(butylene succinate) (PBS) in the presence of dicumyl peroxide (DCP) as a radical initiator in the melt state. The gel fractions, morphologies, crystallization behaviors, and rheological and mechanical properties of the reactive blends were investigated. Some crosslinked/branched structures were formed according to the rheological measurement and gel fraction results, and the crosslinked/branched structures played the role of nucleation site for the reactive blends. The PLA–PBS copolymers of the reactive blends acted as a compatibilizer for the PLA and PBS phases and, hence, improved the compatibility between the two components. Moreover, it was found that the reactive blends showed the most excellent mechanical properties as the DCP contents were 0.2 and 0.3 phr. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39580.  相似文献   

10.
Intercalated and exfoliated nanocomposites of biodegradable poly(butylene adipate‐co‐terephthalate) (PBAT) and Cloisite 30B (C30B) were fabricated by a solution‐casting method to study the effects of the clay loading on the crystallization behavior, thermal stability, and dynamic mechanical properties of PBAT in PBAT/C30B nanocomposites. X‐ray diffraction and transmission electron microscopy results indicated the formation of exfoliated nanocomposites at low clay loadings (<5 wt %) and a mixture of exfoliated and intercalated nanocomposites with a clay content of 8 wt % throughout the PBAT matrix. Nonisothermal melt crystallization studies indicated that C30B enhanced the crystallization of PBAT, apparently because of a heterogeneous nucleation effect. Moreover, an attempt was made to quantitatively study the influence of the presence of C30B and its contents on the nucleation activity of PBAT in the PBAT/C30B nanocomposites. The thermal stability of PBAT decreased slightly in the nanocomposites. However, the storage modulus of PBAT apparently increased with the C30B loading increasing in the PBAT/C30B nanocomposites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Effect of the blend ratios on the morphology and melt rheology of poly(lactic acid) (PLA)/poly(butylene succinate adipate) (PBSA) blends were investigated using scanning electron microscope, strain-controlled rheometer, and capillary rheometer techniques. The morphological analysis shows that the average radius of the dispersed droplets of PBSA particles increases with change in the blend composition, and a co-continuous structure was generated when PBSA content reached 40%. For the linear viscoelasticity, the increase in the storage modulus at low-frequency region was more distinct in PLA/PBSA blends than in their pure components. A second plateau is clearly observed when the PBSA content was 20% or higher. Weight relaxation spectra showed that there was a longer relaxation time for blend system. These relaxation times were considered to be the shape relaxation periods of the droplets, which increase with change in the blend composition. The interfacial tensions of the PLA/PBSA blends at different compositions were between 5.3 and 6.1?mN/m, calculated from the weighted relaxation spectra and slightly higher than those obtained from Palierne model. These values are relatively high, indicating the poor miscibility of the two polymers. Both pure PLA and PBSA follow the Cox?CMerz rule, in good manner. Though, the rule does not satisfy with the PLA/PBSA blends. In addition, PLA/PBSA blends show more non-Newtonian tendencies than their pure components.  相似文献   

12.
The effect of organically modified clay on the morphology and properties of poly(propylene) (PP) and poly[(butylene succinate)‐co‐adipate] (PBSA) blends is studied. Virgin and organoclay modified blends were prepared by melt‐mixing of PP, PBSA and organoclay in a batch‐mixer at 190 °C. Scanning electron microscopy studies revealed a significant change in morphology of PP/PBSA blend in the presence of organoclay. The state of dispersion of silicate layers in the blend matrix was characterized by X‐ray diffraction and transmission electron microscopic observations. Dynamic mechanical analysis showed substantial improvement in flexural storage modulus of organoclay‐modified blends with respect to the neat polymer matrices or unmodified blends. Tensile properties of virgin blends also improved in the presence of organoclay. Thermal stability of virgin blends in air atmosphere dramatically improved after modification with organoclay. The effect of organoclay on the melt‐state liner viscoelastic properties of virgin blends was also studied. The non‐isothermal crystallization behavior of homopolymers, virgin, and organoclay‐modified blends were studied by differential scanning calorimeter. The effect of incorporation of organoclay on the cold crystallization behavior of PP/PBSA blends is also reported.

  相似文献   


13.
Poly(butylene adipate‐co‐terephthalate) (PBAT) nanocomposites films are prepared by a solution intercalation process using natural montmorillonite (MMT) and cetyltrimethylammonium bromide (CTAB)‐modified montmorillonite (CMMT). Cation exchange technique has been used for modification of MMT by CTAB and characterized by Fourier transform infrared analysis, thermo‐gravimetric analysis, and X‐ray diffraction (XRD) studies. CMMT gives better dispersion in the PBAT matrix than MMT and is confirmed by XRD and transmission electron microscopy. Because of better compatibility of CMMT, water vapor transmission rate of PBAT decreases more in the presence of CMMT than MMT. The biodegradability of PBAT and its nanocomposite films are studied in compost and from the morphological analysis it is apparent that the PBAT/CMMT shows a lower biodegradation rate in comparison to the PBAT/MMT. The antimicrobial activity of PBAT and its nanocomposite films is tested by an inhibition zone method. Because of the presence of the quaternary ammonium group of CTAB‐modified MMT, PBAT/CMMT nanocomposites show adequate antimicrobial activity. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40079.  相似文献   

14.
Partially crosslinked poly(β‐hydroxybutyrate‐co‐β‐hydroxyvalerate)/poly(butylene succinate) (PHBV/PBS) and poly(β‐hydroxybutyrate)/poly(butylene succinate) (PHB/PBS) blends were prepared by melt compounding with dicumyl peroxide. The effect of partial crosslinking on crystallization of the PHBV/PBS and PHB/PBS blends was investigated systematically. Differential scanning calorimetry results showed that the overall crystallization rates of both PHBV and PBS in their blends were enhanced considerably by the partial crosslinking. Similar results were also detected in the PHB/PBS blends. The polarized optical microscope observation displayed that the nuclei density of PHBV was increased while the spherulitic morphology did not change much. Conversely, the PBS spherulites turned into cloud‐like morphology after the partial crosslinking which is a result of the decrease in spherulite size, the reduction in interspherulite distance and the interconnection of fine PBS domains. Wide angle X‐ray diffraction patterns confirmed the enhancement in crystallization of the PHBV/PBS blends after the partial crosslinking without modification on crystalline forms of the PHBV and PBS components. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41020.  相似文献   

15.
The biodegradability of poly(butylene adipate‐co‐butylene terephthalate) (PBAT) and PBAT/starch composites with layered silicates prepared by melt intercalation was evaluated with aerobic biodegradability tests in soil and in an aqueous medium containing activated sludge. Nonmodified montmorillonite (MMT) and octadecylamine‐modified montmorillonite (ODA‐M), known to give a microcomposite and an intercalated nanocomposite for PBAT, respectively, were used as layered silicates. After they were buried in the soil for 8 months, the PBAT/MMT microcomposite exhibited a higher weight loss than the control PBAT, whereas the PBAT/ODA‐M nanocomposite showed a lower weight loss instead. Also, the biodegradability test in the aqueous medium, by determining the biochemical oxygen demand, showed that the addition of MMT and/or starch to PBAT promoted biodegradation, whereas the addition of ODA‐M did not. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

16.
Nanocomposites made of poly(lactic acid), poly(butylene succinate), and organically modified montmorillonite were prepared by melt blending in a twin screw extruder. The influence of the organoclay content on nanocomposite properties was investigated. The nanocomposite structure has been characterized by various techniques at different scales. X‐ray diffraction showed an intercalated structure whereas rheological investigations in small amplitude oscillatory shear indicated a partial exfoliation. It was also shown that organoclay was evenly dispersed in the matrix even though some large aggregates were also observed. The mechanical properties of nanocomposites were measured in uniaxial tensile test. Oxygen and water vapor permeability was also characterized. It was shown that dispersed organoclay and aggregates have a direct impact on mechanical properties and permeability. An increase of Young's modulus by 41% and a decrease of permeability by 40% could be obtained with 7 wt % organoclay. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40364.  相似文献   

17.
Poly(lactic acid) (PLA)/poly[(butylene adipate)‐co‐terephthalate] (PBAT) blends were fabricated by melt blending, with 2,2′‐(1,3‐phenylene)bis(2‐oxazoline) (BOZ) and phthalic anhydride (PA) used as compatibilizers. It was found that a small amount of BOZ or PA greatly increased the elongation at break of the PLA/PBAT blends without sacrificing their high tensile strength. Scanning electron microscopy results revealed that the PBAT particles became finer and were uniformly dispersed in the matrix when the compatibilizers were incorporated, which indicated that the interfacial bonding and compatibilization between PLA and PBAT were improved in the presence of the compatibilizers. Compared with PLA/PBAT blends, the molecular weight of PLA/PBAT/PA/BOZ blends was increased due to chain‐extending reactions. Differential scanning calorimetry results suggested PBAT decreased the crystallization rate and crystallinity of PLA in the blends. Moreover, the glass transition temperature of PBAT was further decreased when the compatibilizers were used. © 2013 Society of Chemical Industry  相似文献   

18.
In this study, carbon black (CB) was used to control the conductivity and the compatibility of immiscible poly(butylene succinate)/polylactide (PBS/PLA) blend. It is shown that most of the CB particles are selectively dispersed in the matrix PBS phase because of the viscosity ratio of the blend components. The increasing viscosity of PBS phase prevents the coalescence of the dispersed PLA domain during the melt mixing. The domain sizes of PLA are refined when compared with that of blank PBS/PLA blend. The ternary composite shows an onset of the electrical conductivity at low filler loadings (1.5 wt %), which is attributed to a percolation of CB in the insulating matrix polymer. Moreover, the composites exhibited remarkable improvement of rheological properties in the melt state when compared with that of blank PBS/PLA blend. According to the van Gurp‐Palmen plot, the rheological percolation threshold for ternary systems is lower than 1.5 wt %. Furthermore, the ternary composites present improved mechanical properties and thermal stability even at very low loading levels of the CB. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
Expanding the applications of poly(butylene succinate) (PBS) in processing fields requiring high melt strength, PBS/solid epoxy (SE)/carboxyl‐ended polyester (CP) blends with high melt viscosity were fabricated by the in‐situ crosslinking reaction using SE and CP. The influence of SE/CP had been studied in terms of the rheological property, crystallization behavior, and mechanical property of PBS. The results showed that the melt viscosity of PBS could be enhanced significantly by three orders of magnitude, when the loading ratio of SE to CP was over 15/15. Furthermore, it had also been found that SE/CP component had positive impact on the mechanical properties of PBS, inclusive of reduction of brittleness. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42193.  相似文献   

20.
Polymer blend nanocomposites containing poly(butylene terephthalate) (PBT), polyethylene (PE), and organoclay were prepared by direct melt compounding. Their immiscible morphologies weree investigated using electronmicroscopy, X‐ray diffraction, and parallel plate rheometry. The PE domain sizes were reduced when the polar PBT phase was continuous (PBT/PE = 60/40) because the clay tactoids effectively prevented the coalescence of the dispersed PE domains. However, when the PBT component presented domains dispersed in the rich PE matrix (PBT/PE = 40/60), the addition of clay (>2 wt %) changed the phase morphology into a novel cocontinuous one, which was further confirmed by rheological measurements. The existence of clay tactoids led to a sharp enhancement in the viscosity of the PBT phase, changing the viscosity ratio between the PBT and PE phases remarkably, which may have promoted the phase inversion. As a result, clay had significant effects on the morphology of the polymer blend. © 2006 Wiley Periodicals Inc. J Appl Polym Sci 102: 3628–3633, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号