首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以并网逆变器为功率接口的新能源发电系统在弱电网条件下易发生振荡失稳问题。该文将并网逆变器的控制回路可视化为电路元件组成的虚拟阻抗,基于该电路模型分析了弱电网条件下电流内环与锁相环交互作用导致并网逆变器振荡失稳的机理,在此基础上,提出了基于有源阻尼的稳定控制设计方法,并对不同有源阻尼控制的电路特性以及稳定性提升能力进行了对比分析。研究结果表明,针对锁相环引入负电阻造成的振荡失稳问题,阻抗-高通滤波器型有源阻尼控制策略具有更优的稳定性提升能力。最后通过PSCAD/EMTDC仿真和远宽StarSim控制器硬件在环实验对比了不同有源阻尼控制策略的振荡抑制效果,并验证了阻抗-高通滤波器型有源阻尼控制的动态性能。结果表明,所设计的稳定控制能够在200 ms内有效抑制系统振荡,并且可实现在短路比为1的极弱电网条件下稳定运行。  相似文献   

2.
弱电网条件下,各逆变器之间以及逆变器与电网之间会形成交互耦合,从而影响到系统的稳定运行。针对该问题,提出了一种弱电网下多逆变器并网系统的全局谐振抑制策略。首先,基于并网电流反馈,提出改进的有源阻尼策略形成虚拟阻抗,来增加逆变器自身阻尼,从而抑制多逆变器并联谐振;其次,通过结合电网阻抗测量的改进电网电压前馈策略,抑制电网背景谐波电压通过电网阻抗产生的谐波谐振,从而提高多逆变器并网系统的稳定性。仿真和实验结果均验证了所提谐振抑制策略的有效性和可行性。  相似文献   

3.
弱电网下考虑锁相环影响的并网逆变器改进控制方法   总被引:2,自引:2,他引:0  
由于电网阻抗的存在,并网逆变器的控制系统与电网阻抗相互耦合,弱电网条件会影响并网逆变器的稳定性。并网逆变器控制系统中通常使用锁相环来获取电网同步信息,其动态特性是影响系统稳定运行的关键因素。分析弱电网情况下锁相环输出对系统稳定性的影响,在此基础上提出一种提高系统稳定性的控制方法。在同步旋转坐标系下建立了包括电流环、锁相环和滤波器等环节的三相并网变换器阻抗模型,分析不同电网阻抗和锁相环带宽与并网逆变器稳定性的内在联系。结合阻抗模型中系统电压通过锁相环对电流环的影响,提出一种改进的前馈控制方法来减小锁相环输出影响,前馈环节中包括系统电压、锁相环动态特性和滤波器等环节。分析表明,改进的控制方法能够有效提高并网逆变器在弱电网条件下运行的稳定性。实验证明了所提方法的正确性。  相似文献   

4.
当并网逆变器接入弱电网之时,电网阻抗的宽范围变化可能会导致系统不稳定。为此,通过在公共耦合点(PCC)处并联集中式有源阻尼装置,使其模拟阻尼电阻的外特性,可实现对并网逆变器和电网之间谐振的抑制。此处提出一种基于有源阻尼装置的虚拟电阻值自适应调节方法,既保证系统稳定性,又使有源阻尼装置中流过的电流尽可能小。同时,还提出一种对电流谐波基准的补偿方法,能够减小电流闭环对虚拟阻抗特性的影响,进一步改进阻尼效果。通过在实验室搭建一台5 kW的并网逆变器和一个1 kVA的有源阻尼装置,验证了所提控制方案的有效性。  相似文献   

5.
当并网逆变器(机组)接入弱电网时,电网阻抗的宽范围变化可能会导致系统不稳定。为此,通过在公共耦合点(PCC)处并联集中式有源阻尼装置,使其模拟阻尼电阻的外特性,可实现对并网逆变器与电网之间的谐振的抑制。此处提出一种基于有源阻尼装置的虚拟电阻值自适应调节方法,既保证系统稳定性,又使有源阻尼装置中流过的电流尽可能小。同时,此处还提出一种对电流谐波基准的补偿方法,能够减小电流闭环对虚拟阻抗特性的影响,进一步改进阻尼效果。通过在实验室搭建一台5 kW的并网逆变器和一个1 kVA的有源阻尼装置,验证了所提控制方案的有效性。  相似文献   

6.
为抑制“双高”背景下新型电力系统中日趋复杂的电网背景谐波,并网系统通常需要在已有控制方案基础上附加PCC节点电压前馈策略。而现有研究表明,在弱电网下由于并网逆变器与电网阻抗之间的相互作用,该策略会降低并网逆变器等效输出阻抗在中低频段内的无源性,易引发并网系统产生宽频谐振问题。针对这一问题,通过建立弱电网下并网逆变器系统等效输出阻抗模型剖析了传统PCC节点电压前馈策略在抑制电网背景谐波方面的优点及固有缺陷;并在此基础上基于无源性理论提出了一种新型网侧有源阻尼策略,该策略通过在电容支路增加有源补偿装置与主逆变器附加控制相结合,不仅实现了并网逆变器系统等效输出阻抗在宽频段范围内的充分无源,且能有效抑制电网背景谐波,提高并网系统在弱电网下的稳定性与适应性。通过搭建系统仿真模型对所提控制策略在并网逆变器接入弱电网时的有效性进行了验证。  相似文献   

7.
由于电网阻抗的耦合作用,基于LCL滤波器并网的光伏逆变器之间会产生并联谐振。针对多逆变器并网的谐振问题,提出了一种基于多逆变器并网闭环控制模型的有源阻尼控制策略。基于多逆变器并网拓扑,依据戴维南等效定理建立了多逆变器并网的闭环数学模型,分析了多逆变器之间的谐振机理;采用电容电流反馈构成有源阻尼以抑制并网谐振,给出了基于滤波电容电流反馈的多逆变器并网闭环控制框图;依据谐振阻尼表达式研究了有源阻尼系数对并网系统的稳态及动态特性的影响。在三台10 k W并网逆变器上进行了无阻尼环并网控制算法与加入有源阻尼环控制算法的对比实验,实验结果表明了所提出的有源阻尼控制方法的有效性和可行性。  相似文献   

8.
并网逆变器的网侧电流控制是对逆变器的并网电流进行直接控制,其并网功率因数较高,但LCL滤波器固有的谐振属性容易引起系统的不稳定,通常需要引入阻尼对谐振进行抑制。现有的网侧电流控制方案能够在不增加传感器的情况下利用状态反馈实现有源阻尼,但在弱电网情况下,对电网阻抗的变化较为敏感,且抵抗电网扰动的能力较弱。为克服上述网侧电流控制的缺点,该文提出一种新型网侧电流控制策略。该新型策略以增加闭环控制自由度为思路,并以低成本有源补偿装置为手段,实现了逆变器输出阻抗超宽频率范围充分无源性的目标。最后通过2台逆变器并机的物理实验,验证了该新型网侧电流控制策略在不同电网工况下的强稳定性和抗扰性。  相似文献   

9.
《微电机》2017,(8)
电网含有较丰富的电网电压背景谐波和较大的电网等效阻抗,会对光伏并网逆变器的入网电流质量和系统稳定性产生影响。以LCL型滤波单相光伏并网逆变器的双环无源阻尼控制方案为例,指出常规电网电压比例前馈控制在弱电网条件下不能完全消除电网电压谐波的影响,且系统稳定性会受到电网阻抗变化的影响。文章提出了一种通过并网电压完全补偿的全前馈控制策略,该方法能够使得电压谐波对入网电流的影响降至最低,并且控制稳定性也不受电网阻抗的影响,对弱电网有很强的适应性,仿真实验验证了该控制策略的有效性。  相似文献   

10.
针对常用的电流滞环控制系统,研究具有电抗-电阻(L-R)特性的弱电网对L滤波参数的限定条件。研究表明,基于LCL滤波的电流滞环控制系统的电网阻抗对有源阻尼抑止谐振,逆变器开关行为和系统稳定性有非常重要的影响。因此,必须仔细设计滤波器参数和控制器算法。  相似文献   

11.
由于大功率分布式发电装置散落分布,电网表现出弱电网特性,电网阻抗会影响并网逆变器的稳定性,使并网电流发生谐波振荡,甚至系统失稳。首先建立了LCL型单相并网逆变器的输出阻抗数学模型,通过阻抗分析方法研究了弱电网工作条件下并网逆变器的稳定性;然后基于系统相角裕度动态补偿控制思路,提出了一种并网逆变器的阻抗相角补偿控制策略,给出该阻抗相角动态控制策略的具体实现方法与参数设计过程,并定量分析了锁相环、数字控制延迟与阻抗相角补偿控制对逆变器输出阻抗数学模型的影响,以及阻抗相角补偿控制策略对逆变器并网电流基频相位的影响;最后结合脉冲响应法在线测量电网阻抗,设计阻抗相角动态控制方案,通过实验对该方案的有效性进行验证。  相似文献   

12.
位于电网末梢或偏远地区的新能源发电弱电网中,大量本地阻感性负荷的接入会引起电网阻抗变化与频率偏移及电压波动,进而影响LCL逆变器自身谐振尖峰抑制及其输出有功与无功动态调节过程。对此,提出了一种LCL逆变器阻尼谐振抑制与功率快速调节方法,包括鲁棒并网电流反馈有源阻尼控制、同步参考系准比例积分控制及功率快速调节。提出的鲁棒并网电流反馈有源阻尼控制增强了系统阻尼特性,抑制了LCL谐振尖峰;光伏能量功率前馈和负载无功快速检测可实现LCL逆变器的有功功率快速调节与电压无功紧急支撑功能;同步参考系准比例积分控制可降低电网基波频率偏移对系统稳定性的影响,增强了系统整体鲁棒性。通过深入分析控制系统动态响应和稳定性,给出了控制参数优化设计方法。最后,仿真及实验结果验证了所提控制策略的可行性。  相似文献   

13.
弱电网条件下,由于电网阻抗与逆变器阻抗失配,并网电流容易发生谐波振荡,破坏了系统的稳定性.基于阻抗分析法,建立了考虑锁相环(PLL)和控制延时的单相LCL并网逆变器的小信号模型,通过阻抗稳定判据分析了弱电网在常规控制策略下的失稳机理,提出了一种基于多谐振控制器的电压前馈控制来独立控制公共耦合点(PCC)电压基频分量和谐波分量,增强系统稳定性的同时显著提升并网电能质量.该方法从阻抗角度分析PLL及电压前馈对逆变系统稳定性的影响,为抑制低频次谐波设计了多谐振控制器,并基于阻抗稳定准则详细推导实现方法和参数设计过程,最后仿真结果验证了所提控制方法的有效性和可行性.  相似文献   

14.
从并网耦合端看进去的弱电网,通常被等效为阻抗与富含背景谐波的电压源相串联的形式。考虑到电网阻抗的存在,入网电流闭环控制与电网电压背景谐波前馈控制相互耦合,常见比例前馈控制会额外引入一条正反馈环路,恶化入网电流品质,甚至威胁系统稳定性。建立弱电网条件下并网逆变系统模型,明晰弱电网条件下大量谐波电流的形成机理。提出谐振前馈控制策略,衰减电网阻抗在谐振频率段的幅值响应,提高了系统的相角裕度,减小入网电流稳态误差。提出谐振前馈与谐波控制器相结合的两种控制方案,兼顾减小入网电流稳态误差与提高对弱电网感抗及其低次背景谐波的适应性。设计一台3k W并网逆变器原理样机,并通过实验验证提出控制策略的有效性。  相似文献   

15.
LCL滤波器因具有良好的高频衰减特性而被广泛用作并网逆变器与电网的接口。弱电网情况下,并网模型中电网感抗值不可忽略,电网感抗的存在会影响LCL谐振频率的大小,对传统有源阻尼控制方法提出挑战。在分析基于带阻滤波器的有源阻尼控制方案基础上,引入自适应陷波滤波器,提出了一种能够跟随系统参数变化自适应调整陷波滤波器负谐振点位置的有源阻尼控制方法。以光伏逆变系统为载体对该算法进行仿真分析,结果验证了该方法在弱电网情况下的有效性和自适应性:系统谐振频率发生偏移时该方法能够实现对其的准确跟踪,并且显著降低谐振频率点及附近频率段的谐波含量;电网电压发生±5%以内电压突变时,该方法的动态响应特性仍能满足系统的稳定运行要求。  相似文献   

16.
江涛  汪海宁 《低压电器》2013,(15):29-33
在逆变器多机并网的背景下,研究分析了基于LC滤波器在弱电网条件下并网点电压谐振的机理和谐振频率的变化原因,得出了弱电网下多机并网会使电网越来越弱的结论。分析了谐振对并网逆变器设计和控制带来的影响及对策,提出一种新的基于虚拟阻尼介入的并网逆变器控制模型,研究了反馈系数对减弱谐振的影响,通过仿真试验,证明了新的控制模型能够适应弱电网,削弱并网点电压和电流的谐振,并能改善并网环境。  相似文献   

17.
弱电网条件下,电网表现出来的低短路容量和电网阻抗宽范围变化特性,会严重影响LCL型并网逆变器控制系统的性能及其运行稳定性。针对上述问题,以LCL型并网逆变器模型为基础建立数学模型,推导出逆变器输出阻抗与相位裕度、系统鲁棒性之间的关系,提出了并联虚拟阻抗的控制策略,以增加系统的相位裕度,使逆变器并网系统能够在宽范围电网阻抗条件下依旧保持良好的控制性能。最后通过仿真及实验验证了该控制策略的正确性和有效性。  相似文献   

18.
光伏逆变器并联接入弱电网时,会与时变的电网阻抗产生交互耦合,影响系统稳定性,甚至引发谐波谐振问题。针对此问题,首先,本文建立了LCL型光伏逆变器并联系统的等效电路模型,利用阻抗分析法对弱电网条件下光伏逆变器并网系统的稳定性条件进行了分析,得出逆变器输出阻抗与电网阻抗在谐振频率处具有一定的相角裕度才能使系统稳定运行的结论;其次,提出一种电网电压前馈附加相位超前补偿的控制策略,该策略能够适应不同电网阻抗的接入条件,使系统在谐振频率处具有一定的相角裕度,避免谐振的发生;最后,通过仿真和实验验证了所提出的谐振抑制策略的有效性。  相似文献   

19.
有源阻尼器通过构造虚拟电阻提高接入弱电网中逆变器的稳定性,但虚拟电阻的准确性受开关频率限制,有源阻尼器的功能难以集成到常规的并网逆变器中,为此,提出一种虚拟电阻补偿控制方法。建立集成有源阻尼器功能的并网逆变器阻抗模型,分析虚拟电阻对提升系统稳定性的作用;阐明控制带宽和数字延时对虚拟电阻准确性的影响,针对并网逆变器易发生谐振稳定性问题的谐振频段,设计一种新的虚拟电阻补偿环节,显著提升了虚拟电阻的补偿精度。系统阻抗稳定性分析表明,所提方法虚拟出的阻抗具有良好的电阻特性。实验结果表明,集成有源阻尼器功能的并网逆变器接入系统后具有较好的阻尼谐振作用,显著提升了系统稳定性。  相似文献   

20.
基于阻抗分析法研究光伏并网逆变器与电网的动态交互影响   总被引:20,自引:0,他引:20  
大量存在的并网逆变器会对分布式发电系统的电能质量和系统稳定性造成深刻影响,该文基于阻抗分析方法研究光伏并网逆变器与电网间的交互影响。论文定量分析光伏并网逆变器与电网之间由于阻抗交互影响所产生的谐波振荡,并通过基于硬件在环的分布式发电综合实验平台验证不同电网接入条件对并网逆变器稳定性的影响;推导LCL型并网逆变器的系统阻抗模型,并提出一种基于电压前馈的主动阻抗控制策略来提高逆变器与电网之间的稳定相角裕度,使光伏并网逆变器在不同的动态电网条件下均具有较好的控制鲁棒性;最后给出阻抗主动调整控制策略的设计过程和参数设计方法,并通过仿真验证主动阻抗控制策略的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号