首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
以24kV双断口直流真空断路器为对象,基于实验平台,通过高速摄像机捕捉分断过程中两断口间隙不同情况下电弧时空变化,利用图像技术提取开断过程电弧特征值,并测得开断电流与暂停恢复电压分布。引入连续过渡模型,对断口间鞘层发展与微观特性进行计算分析。通过对阴极表面电场强度及功率密度的计算,分析双断口间隙差异对整机系统介质恢复的影响。实验与仿真比对分析表明,串联断口间隙差异的存在将直接影响断口间电弧能量分布,其中小间隙断口电弧能量密度相对更高、金属蒸气浓度大且介质恢复能力下降,更易发生重击穿。对于24kV双断口直流真空而言,两断口间隙差存在最大临界值,当超过临界值时,小间隙断口间金属蒸气粒子不易快速消散,触头表面电场强度与功率密度高,易形成击穿薄弱点,进而导致重燃与开断失败。  相似文献   

2.
研究弧后阶段等离子体扩散过程是研究真空断路器弧后介质绝缘恢复的基础,有助于提高真空断路器的开断性能。该文通过建立二维蒙特卡洛粒子仿真模型,模拟真空断路器燃弧过程中的剩余等离子体在弧后瞬态恢复电压作用下的扩散过程,仿真过程中考虑了等离子体与金属蒸气的碰撞。另外,分析金属蒸气密度对弧后等离子体扩散过程的影响。结果表明,金属蒸气密度越高,等离子体扩散速度越慢,鞘层内电场越强,但带电粒子速度降低;与无金属蒸气情况相比,金属蒸气作用下,等离子体扩散过程中不再出现密度整体下降、鞘层发展速度迅速增加等特征,弧后电流随时间下降平缓,但当金属蒸气密度较低时,等离子体扩散过程又表现出与无金属蒸气时类似的特征。  相似文献   

3.
为分析双断口真空断路器的开断特性,建立了双断口真空断路器的合成开断试验平台和基于一种改进真空电弧模型的电磁暂态仿真平台。对开断电流、电弧电压、燃弧时间和瞬态恢复电压(transient recovery voltage,TRV)分配比例等参数进行了试验测量,通过仿真诊断等离子体参数,对试验结果进行了机理分析。结果表明:过长的燃弧时间会导致过大的燃弧能量和转移电荷,可能使电弧发生集聚;高压断口的延迟分闸会造成弧后残余等离子体特性的差异,从而加剧双断口真空断路器TRV分配的不均匀性;这2种情况均不利于开断。此外,双断口真空断路器均压电容的取值除了考虑TRV均匀分布外,还应兼顾弧后阴极表面电场分布的一致性,过大的均压电容反而不利于开断。因此,燃弧时间及其同步控制和合理均压电容值的选取是双断口真空断路器成功开断的关键。  相似文献   

4.
建立了基于扩散型真空电弧开断的真空断路器黑盒模型。以电流过零点为界,针对燃弧阶段建立了电弧电压模型,并根据试验数据确定了相关系数;针对弧后介质恢复阶段建立了基于朗缪尔探针理论的弧后电流模型,不同瞬态恢复电压(TRV)上升率对应的仿真结果与试验结果一致。基于所建立的模型,采用不同的方法评估了短路电流直流分量造成的真空断路器等效开断能力下降倍数,结果表明:燃弧能量法进行评估时最苛刻,转移电荷法次之,电流有效值法最轻。采用弧后电导表征真空断路器的弧后介质恢复程度,结果表明:TRV上升率主要影响弧后1.5 μs以后的介质恢复速率,而过零前短路电流下降率仅影响初始弧后介质恢复速率。最后给出了部分系统故障参数对真空断路器开断性能的影响规律。  相似文献   

5.
应用于大电流、高di/dt分断环境的直流真空断路器,以绝缘恢复为主要特征的弧后暂态过程直接影响其分断特性.在鞘层发展过程中,弧后阴极表面电场强度及功率密度是引起电弧重燃的两种因素,为探究熄弧后真空断路器恢复电压变化规律,该文首先从提升弧后介质恢复能力的角度出发,在燃弧电流峰值约23kA、熄弧电流变化率约300A/μs的等级上先后开展不同试验方案,并在连续过渡型鞘层数学建模基础上做出一定修缮,引入触头开距动态变化过程和电弧有效直径变量,依据改进后电弧模型指导换流回路参数设计.最后将PSCAD/EMTDC电磁暂态仿真与分断试验现象进行等价对比分析,显示试验过程中真空断路器弧后电弧重燃趋势与仿真结果较为贴合,且通过仿真结果可判定重击穿的类别,从而验证了改进后真空断路器弧后电磁暂态建模的精确性.  相似文献   

6.
最佳燃弧区间的确定是相控真空断路器应用于短路电流开断时必须解决的问题之一。针对真空断路器弧后介质强度恢复过程的2个主要阶段:鞘层发展阶段和金属蒸气衰减阶段,分别建立了数学模型,提出了采用特征参数来表征它在2个不同阶段的开断能力。仿真分析了燃弧时间对这些特征参数即开断能力的影响,从而得到了最佳燃弧区间。通过对比10 kV和35 kV系统用真空断路器最佳燃弧区间的试验研究结果,证明了仿真分析的有效性。  相似文献   

7.
基于有源强迫换流技术实现的直流真空断路器容易向中高压大容量场合拓展,是直流分断技术发展的重要方向。针对10 kV级直流真空断路器,进一步分析了大电流换流分断特性,并开展了换流分断过程的试验研究。研究结果表明:在燃弧电流峰值23 kA、电弧电流下降率300 A/μs条件下,真空断路器无法在电弧电流零点可靠熄弧分断,且真空间隙的弧后介质恢复过程存在一定的随机性和分散性。为了改善大电流弧后介质恢复特性,提出了串联二极管的直流真空断路器换流分断方案,利用二极管的反向阻断作用为大电流真空电弧提供一段"零休"时间。相同分断参数条件下的对比试验结果显示,在二极管反向阻断期间,尽管真空间隙可能会不断地重复进行"介质恢复–介质击穿–介质恢复"过程,但在此阶段的介质击穿不会导致电弧重燃,真空间隙最终均能在换流电容电压变为正极性前建立足够的介质强度,实现对直流大电流的可靠分断;同时在试验条件下,被试真空断路器弧后至少需要85μs才能完全恢复介质强度。  相似文献   

8.
《高压电器》2015,(11):59-63
基于新型永磁斥力混合高速操动机构和转移回路强迫过零开断的方法,在合成回路系统中进行了真空电弧直流开断实验。利用CMOS高速摄像机观测直流开断过程中不同转移电流频率下真空电弧的燃烧及转移过程,采用图像处理技术提取了电弧图像特征,得到了不同转移电流频率下强迫过零阶段电弧的形态变化,不同燃弧时间下的电弧形态变化以及不同预充电电压下的电弧形态变化,并对电弧形态变化的原因进行了分析。分析结果表明,注入同等的电弧能量,转移电流频率较低时,电弧形态演化过程长,有利于熄弧后电极间隙介质绝缘强度的恢复;电压过充对电弧形态的演变过程影响较小;燃弧时间较长时,电弧处于大面积稳定燃烧状态的时间较长,产生的金属蒸汽越多,不利于开断。  相似文献   

9.
为了保证新型强迫换流型真空直流限流断路器关断短路电流的可靠性,对该型断路器分断过程的真空介质恢复特性进行研究。设计了与断路器关断过程等效的介质恢复试验方案,通过等效试验结果和理论推演公式的拟合,得到了新型强迫换流型限流断路器真空灭弧室触头打开过程的动态介质强度恢复规律。研究结果表明:减小燃弧能量、提高触头运动速度可提高真空灭弧室介质的临界击穿电压;综合考虑燃弧时间与燃弧能量及触头开距的关系,随着燃弧时间的增加,真空灭弧室临界击穿电压先减小后增大。所得介质恢复规律可以作为新型断路器优化设计的参考依据。  相似文献   

10.
以30kV双断串联口直流真空断路器为研究对象,建立换流回路拓扑结构,采用连续过渡模型,考虑换流回路元件参数的影响,提出非同步下短路电流及暂态恢复电压计算模型,分析同步以及不同延时时间下(0.1~0.5ms)双断口直流真空断路器开断特性与暂态恢复电压分布差异。搭建机械式双断口直流真空断路器样机实验平台,在4.5kA短路开断电流下进行延时开断实验分析。仿真与实验比对分析的结果表明:由于机构分散性导致双断口直流真空断路器中的某一断口动作延时时,两个断口的暂态恢复电压分布存在差异;断口间暂态恢复电压分配不均,先动作的断口承受更高电压;延时时间0.5ms是成功开断的极限时间;延时时间越长,开断性能越劣化。  相似文献   

11.
真空断路器和SF6断路器串联的混合断路器,可有效利用真空和SF6气体两种介质不同的灭弧特性实现更大短路电流的分断。为研究两种电弧的相互任用,运用ATP软件及其TACS工具建立了系统实验仿真平台、12kV真空断路器与40.5kV SF6断路器的电弧模型;将仿真结果与实验波形结合通过数学方法分别求得实用的真空电弧和SF6电弧模型参数;搭建了实用真空电弧模型与SF6电弧模型串联的混合断路器模型。通过设定不同的系统仿真参数,研究开断过程中真空电弧和SF6电弧的相互作用及真空断路器与SF6断路器的分压关系;分析两断路器不同时刻分断的协同特性与介质恢复过程;量化研究混合断路器的断流容量增益特性。仿真结果证明,真空断口首先承担恢复电压有利于SF6断口的介质强度恢复;两断口间的电压分布关系主要由电弧电阻与断口间电容决定;在不增加SF6气体使用量的情况下混合断路器具有比SF6断路器更大的断流能力。研究结果为大容量混合断路器的设计提供了理论依据。  相似文献   

12.
基于换流原理的机械式高压直流真空断路器,是高压直流系统短路开断的有效方式之一,电弧熄灭后断口间介质恢复强度能否耐受恢复电压是决定其开断性能的关键,因此换流时间与最小安全开距的配合成为其设计的重要参考依据。该文利用直流开断实验平台,实验研究了高压直流真空开断系统样机在不同换流时刻、开断电流幅值、换流频率、换流电流与开断电流的幅值比(换流比)下的换流时间和最小安全开距。结果表明:换流时刻选择过早会导致电弧因开距不足而重燃,在实验条件下,换流频率3kHz,开断5kA直流电流,最小安全开距约为0.60mm;随着开断电流幅值的增加,最小安全开距近似线性增大;随着换流频率或换流比的增大,换流时间均将明显减小,对最小安全开距的要求也随着断口恢复电压的增加而更高。  相似文献   

13.
机械式直流断路器弧后特性是表征其开断性能的重要参数.为获得直流开断过程中真空开关弧后电流峰值与时间、电流零点附近的di/dt、du/dt等影响规律,该文首先分析基于电流转移的机械式真空直流断路器弧后电流测量原理,设计机械式真空直流断路器弧后电流测量装置参数,搭建基于强迫过零方式的机械式直流开断实验平台,测量开断电流为1.5kA情况下机械式真空直流断路器弧后电流,讨论换向频率和恢复电压对弧后电流的影响.研究表明,基于电流转移的弧后电流测量装置可以有效测量弧后电流,弧后电流随着换向频率和恢复电压的增大而增大,恢复电压在相位上稍滞后弧后电流约100ns,且换向频率对弧后电流的影响大于恢复电压的影响,为断路器开断性能的优化研究提供了参考.  相似文献   

14.
模块化三断口真空断路器动态分压特性   总被引:2,自引:0,他引:2  
为得到基于40.5kV光控模块单元的U型三断口真空断路器的动态分压特性,给合理选择均压措施提供参考,通过低压、小电流的合成开断试验测量了该断路器弧后瞬态恢复电压(transient recovery voltage,TRV)的分配特性。同时通过试验验证了串接大电容使均压电容兼作分压器用的TRV测量方法的有效性。而对大电流弧后三断口真空断路器的TRV分配特性,基于连续过渡模型在PSCAD/EMTDC中进行了仿真分析。试验和仿真结果表明:小电流开断时,TRV分配特性与静态电压分配特性相近,静态均压设计可满足小电流开断的要求;大电流开断条件下,各断口残余电荷参数的差异可能对TRV分配产生显著影响;进行动态均压设计时,需要考虑断口不同期可能导致的TRV分配不均匀程度增大的问题。  相似文献   

15.
提出采用真空与SF_6灭弧室串联构成的混合式断路器应用于高压直流领域,充分利用真空介质恢复强度快和SF_6介质恢复强度高的优点,在弧后初始阶段,真空灭弧室承受主要的暂态恢复电压(TRV),后期TRV主要由SF_6灭弧室承担。搭建了混合式高压直流断路器的仿真分析模型,分析了弧后动态电压分布与动态绝缘特性配合,并研究了混合式高压直流断路器的电流转移过程。在电流转移过程中不同介质灭弧室在不同阶段承受TRV可以提高混合直流断路器的开断能力,得到了最佳配合工作方式。为混合式高压直流断路器的研究奠定了理论基础。  相似文献   

16.
针对目前真空断路器无法在现场进行短路开断能力评估的问题,提出一种利用低能量直流对真空断路器短路开断能力的评估方法。首先分析真空断路器的基本结构和电弧开断原理,得出工程实践中真空断路器开断故障电流失败的原因;其次使用小容量直流高电压、直流大电流模拟真实情况,在断路器触头间注入可控的直流电流和直流电压,通过检测断路器分闸过程电气量变化时间来评估断路器的极限开断能力。对安徽某变电站VS1-12真空断路器进行现场测试,结果表明低能量直流法能有效评估真空断路器短路开断能力,适合现场对断路器短路开断能力的筛查评估。  相似文献   

17.
真空断路器是以真空为灭弧介质和绝缘介质的,在开断电路且交流电流过零时,只要在相反电极上不产生新的阴极辉点,电弧弧柱内的金属蒸气和带电粒子在极短的时间内扩散而被电极和屏蔽所捕捉,则电弧熄灭,空间的绝缘强度迅速恢复,因此,其灭弧速度和绝缘介质恢复速度都快。  相似文献   

18.
真空断路器开断小电感电流产生的多次复燃过电压和介质恢复强度密切相关。因此需建立真空断路器切小感性电流负载的介质恢复微观参数模型,依据此模型得到负载电路参数对真空断路器切小感性电流复燃现象的影响规律。该研究建立了小电感电流真空开断过程的介质恢复鞘层发展模型,得到了介质恢复过程的鞘层发展速度、触头间隙中的电场强度、离子浓度和离子速度等微观参数。以临界击穿场强作为击穿判据,得到了负载电路参数对真空断路器切小感性电流复燃现象的影响规律:负载电容或电感越大,鞘层发展速度变慢,在阴极端产生的最大电场强度越小,因此复燃发生的危险越小,过电压变小;负载端等效电阻的增大会使高频电流幅值减小,从而开断电流减小,鞘层发展速度变慢,最大电场强度降低,因此复燃击穿次数减少。  相似文献   

19.
瞬态恢复电压(transient recovery voltage,TRV)均匀分配是双断口真空断路器安全可靠运行必须解决的关键问题。从双断口真空断路器的暂态等值电路出发,建立了描述其TRV分配特性的数学模型,揭示了杂散电容和弧后等离子体特性差异是导致双断口真空断路器TRV分配不均匀的2个主要因素。基于真空电弧模型,仿真验证了双断口真空断路器TRV分配数学模型的有效性。不同均压电容下双断口真空断路器TRV分配特性的仿真和试验结果均表明:均压电容能有效提高TRV分配的均匀性;然而,过大的均压电容会显著提高重燃电流的幅值和持续时间,不利于双断口真空断路器的成功开断,即表现出负效应。因此,均压电容取值不宜过大,能保证TRV分配比较均匀即可。  相似文献   

20.
《高压电器》2016,(7):203-204
正为纪念王季梅先生开创中国真空开断技术之先河,展示该领域最新进展和发展趋势,促进我国真空开断技术的进一步发展,《高压电器》编辑部特邀西安交通大学王建华教授、贾申利教授和刘志远教授作为特约主编,主持"真空开断技术"专题,拟于《高压电器》2017年第3期出版。真空开断技术是以真空作为绝缘和灭弧介质的金属蒸气电弧开断技术。高真空中,电极间隙绝缘强度高,电弧电压低,弧后介质强度恢复速度快,触头电磨损速率小,这些特点使得真空开关及断路器在配电系  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号