首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
近年来,随着新型发电及用电技术的发展,以及对电力供应可靠性和容量要求的提高,直流配用电与直流微电网技术日益获得广泛关注。该文针对一条现役35 kV交联聚乙烯(XLPE)交流电缆线路在发生二次故障后的改造工程,创造性地提出将其改为直流运行的方案,并针对方案中所确定的±10 kV直流电压、150 A额定电流运行参数,自行设计对电缆性能进行全面校核的试验方法。在送检电缆样段顺利通过所有试验项目并完成必要的系统改造后,将电缆线路投入直流±10 kV电压下作双极运行。线路在改造后至今已安全运行4年。与传统的修复运行、新增线路等备选方案相比较,从经济性、工程性、可靠性等多方面,改直流方案均具有明显的优势,而且研究还显示其存在大幅增容的潜力。该文的研究可为国内XLPE电缆直流配网系统建设以及现役交流电缆线路改为直流运行提供理论借鉴及工程参考。  相似文献   

2.
对交流交联聚乙烯(XLPE)电缆配电线路进行直流改造后,确定合理的直流运行电压等级对改造后电缆的安全稳定运行及系统供电能力的提高具有重要意义。针对改为双极式直流运行的10kV和35kV交流配网中的典型XLPE电缆,通过有限元分析软件ANSYS对其在直流稳态工作电压及暂态冲击电压下的电场强度最大值及分布情况进行仿真分析。仿真结果表明,为避免空间电荷效应引起绝缘击穿,10kV和35kV交流XLPE电缆改为双极式直流运行后的电压等级分别取±10kV和±20kV为宜,可为相关工程提供一定参考。  相似文献   

3.
随着柔性直流输电技术的发展,将现役交流XLPE电缆线路改为直流运行以提升传输能力已成为全球关注的热点。以交流配网中典型的单/三芯XLPE电缆(110kV及以下)为例,从主接线形式选择、线芯回路配置、接地方式设计3个方面开展了单/双回路配电线路的直流改造方案设计研究,综合考虑投资成本、供电可靠性、传输容量、工程实用性等方面,系统分析了直流改造的可行性。研究结果可为现役交流配网改直流运行的实际工程应用提供重要参考。  相似文献   

4.
对交流交联聚乙烯(XLPE)电缆配电线路进行直流改造后,确定合理的载流量对电缆的安全稳定运行及配网供电能力的提高具有重要意义。针对10kV和35kV交流配网中的典型三芯XLPE电缆,通过有限元分析软件ANSYS建立电缆温度场仿真模型,对电缆在双极式直流运行方式下的温度场分布进行仿真分析。仿真结果显示,当电缆的长期运行温度为70℃时,所选典型10kV和35kV交流XLPE电缆改为双极式直流运行后的载流量分别取440A和300A为宜,可为相关工程提供一定参考。  相似文献   

5.
在现役XLPE交流电缆线路的直流改造中,载流量的合理设计是关键问题之一,决定了改造线路的传输容量和运行可靠性。文中对同一线路在交、直流电压下运行时的等效热路模型及载流量解析算法进行了对比,分析了造成交、直流线路载流量差异的关键因素,并以空气敷设的三芯10 kV XLPE电缆为例,进行了同一线路在相同敷设条件下的交、直流载流量模拟试验。研究发现,目前直流改造所涉及的现役XLPE交流电缆线路,在进行直流载流量评估时,绝缘温差要求不成为限制条件,仅需考虑线芯温度限制、按照IEC60287-2017推荐方法进行计算;在线芯电阻、金属护套损耗、载流芯数、环境热阻及线芯允许长期工作温度等影响因素中,交流电缆改为直流运行后线芯允许工作温度由90℃下降为70℃,在很大程度上抵消了其他因素对载流量的有利贡献;10 kV XLPE电缆载流量模拟试验数据和解析计算结果吻合,偏差很小,验证了解析计算方法的有效性。对10、35 kV三芯和110 kV单芯电缆在不同典型敷设情况下的交、直流载流量计算显示,改为直流运行后,三芯电缆的载流量略有增加,单芯电缆稍有下降,变化幅度均未超过6.5%。  相似文献   

6.
计算分析和软件仿真35kV交流电缆线路中典型交联聚乙烯(XLPE)电缆改为三极式直流运行后的电场和温度场,当电缆长期运行温度取90℃时,所选电缆的最大直流电流可考虑取425A,直流电压等级可考虑取±50kV,最大输送功率约为改造前的2.6倍,所得结论可为相关工程提供一定参考。  相似文献   

7.
计算分析和软件仿真35kV 交流电缆线路中典型交联聚乙烯(XLPE)电缆改为三极式直流运行后的电场和温度 场,当电缆长期运行温度取90℃时,所选电缆的最大直流电流可考虑取425A,直流电压等级可考虑取±50kV,最大输送功率约为改造前的2.6倍,所得结论可为相关工程提供一定参考。  相似文献   

8.
将交流电缆线路改为直流运行是提高电缆线路输送功率的有效途径之一,确定交流电缆的直流载流量对电缆的交流改直流运行意义重大。为此,采用解析法和数值法分析了空气中敷设66 kV电压等级交流交联聚乙烯(XLPE)电缆的直流载流量,开展了直流载流试验;同时采用数值法计算了直埋敷设2根平行排列交流电缆的直流载流量,并计算了电缆改为直流运行后的输送功率。计算结果表明:对于空气中敷设的交流电缆,采用解析法和数值法得到的直流载流量与试验测试结果基本一致(780 A);直埋敷设交流电缆的直流载流量约为710 A;当交流电缆改为直流运行的工作电压取57 kV时,其输送功率和原交流系统相等。上述结果验证了解析法在计算高压(66 kV)电缆直流载流量时的适用性,同时为后续66 kV交流电缆线路改为直流运行奠定了基础。  相似文献   

9.
准确有效地评估交流电缆改为直流运行时的增容效果对电缆交改直后的安全运行至关重要。现有研究主要基于缆芯温度70℃为阈值确定交改直的电压等级和载流量,并未考虑绝缘层的稳态电场强度。因此,文中综合考虑临界反转时稳态电场强度较小和温升限值约束,提出了以绝缘层中的电场强度5 MV/m为限值的交改直电压等级和载流量判定方法;并且以66 kV交流XLPE电缆为例进行仿真计算,分析了直埋土壤敷设下交流电缆改为单极直流和双极直流运行时的增容效果。研究结果表明:当电缆在直埋土壤敷设下以66 kV单极直流运行和双极直流运行时,最大输送功率分别为改造前的1.53倍和1.12倍。所采用的分析方法可为电缆线路交改直工程提供一定的参考。  相似文献   

10.
将交流电缆配电线路改造为直流运行后,准确设计电缆的运行参数能在最大程度上利用原有线路的供电能力。为此,以10 kV电压等级交流配电网中广泛使用的典型3芯交联聚乙烯(XLPE)绝缘电缆为例,根据所选电缆的结构和材料参数,使用有限元分析软件ANSYS建立了电缆温度场和电场耦合仿真模型,并在直流运行方式为双极式的条件下对电缆的温度场和电场进行了仿真。研究结果表明:对于所选典型电缆,为避免空间电荷效应的影响,其直流电压等级的取值范围为±10~±20 kV;当电缆在温度为40℃的空气环境中敷设而且导体的长期工作温度为70℃时,其载流量约为440 A;同时,其最大输送功率约为改造前的1.3~2.6倍。所得结论以及所用设计条件、步骤可为相关工程提供一定参考。  相似文献   

11.
为升级输电线路的传输能力,可将现役交流XLPE电缆线路改为直流运行,但仍缺乏改造方案设计的统一标准或规范。因而对1根投运7年的YJV22-8.7/10 kV-3×185 mm~2电缆进行绝缘环切,在相同条件下对切片试样进行交流及直流电压下的连续和逐级升压击穿试验。结果表明:升压速率为2、0.5、0.1 kV/s的连续升压击穿试验中,升压速率对试样的交流平均击穿场强影响很小,而对直流击穿场强影响较大;时间步长为2、6、15 min的逐级升压试验中,随着时间步长的增加,交流击穿场强略有降低,而直流击穿场强显著增大。随着电压施加时间的增加,交流击穿场强下降,而直流击穿场强反而增大,这导致直/交流击穿场强比值持续增大,由1.33增大至3.73。以击穿场强的95%置信下限值为基础,推导可获得XLPE绝缘试样的交、直流1 h击穿场强分别为89.50 kV/mm及247.55 kV/mm,而反幂定律中的电老化寿命指数拟和值为17和-11.51。在高压短时击穿试验范围内,试样的直流耐压性能随时间变化不符合传统电老化寿命定律,这可能与空间电荷效应的时间依赖性有关,需要后续研究进一步确认;同时也说明基于薄试样、高电压、短时间的击穿试验数据无法有效反映直流绝缘的长期电老化性能,不能直接用于XLPE直流电缆的绝缘结构设计。  相似文献   

12.
因地理条件限制,南澳±160 kV多端柔性直流输电示范工程(简称南澳柔直工程)中多个换流站之间无法采用传统全电缆线路实施连接。针对这一问题,制订了XLPE绝缘电缆和架空线相结合的直流输电线路设计选型方案,提出电缆系统的避雷器配置方案,并通过PSCAD/EMTDC软件仿真计算了直流电缆系统可能承受的操作冲击和架空线雷电侵入过电压水平。结果表明:混合线路中±160 kV直流电缆系统的绝缘设计主要受同极性操作冲击过电压和反极性雷电侵入过电压控制,最大过电压水平分别为285.6 kV和336.7 kV。基于换流站直流主设备绝缘配合的统筹考虑,提出保护用避雷器的操作和雷电保护水平分别为295 kV和325 kV,进而确定±160 kV直流电缆系统的同极性叠加操作冲击和反极性叠加雷电冲击耐受电压值分别为450 kV和390 kV。研究结果被成功应用于南澳柔直工程,并用于指导更高电压等级的柔性直流输电用电力电缆的研发。  相似文献   

13.
南澳岛±160 k V多端柔性直流输电工程在我国首次采用了高电压、大长度的挤包绝缘直流电缆系统,而目前在国内尚无此电压等级直流电缆工程的运行及维护经验,因此亟需对交联聚乙烯(XLPE)直流电缆的载流特性展开研究,从而为直流电缆线路运行限值的控制以及在线监测系统的定制提供技术支持。通过研究不同敷设环境下直流电缆的散热原理,采用专业有限元软件COMSOL Multiphysics建立了带保护套管埋地敷设方式下±160 k V直流XLPE海底电缆的温度场模型,用以模拟其温度分布和计算其载流量;通过在试验场地开展静态载流试验,对仿真模型的可靠性进行了验证;对试验结果进行讨论,分析得出了直流海缆的载流特性。  相似文献   

14.
高压直流电缆是跨海长距离输电和新能源并网的重要装备,高电压等级、高通流能力的直流电缆还处于研发阶段。为推进高压直流电缆研发,考验长期运行性能,依托国内某±500 kV柔性直流电网工程建立了直流电缆综合试验站。该柔性直流工程线路主要采用架空线,试验站位于其中一个换流站单极出线处,采用直流电缆与架空线路并联运行方式,其运行控制和保护配合复杂、可靠性要求极高,尚无工程经验可循。针对500 kV级直流电缆试验段与架空线路并联切换运行的接线方式,提出了试验站直流电缆监视和投入退出控制策略、故障保护策略以及过负荷运行控制保护策略。仿真试验结果证明,所提策略可保证直流电缆接入柔性直流电网后可靠运行。  相似文献   

15.
将交流电缆线路改为直流运行可以充分利用原有输电线路走廊,最大限度地发挥原有输电线路的输送能力。为研究交流交链聚乙烯(XLPE)电缆在直流电压下的电场分布和空间电荷积累特性,应用COMSOL多物理场仿真软件,模拟了温差为25℃及45℃时电缆绝缘层中的温度场,并基于绝缘试片电导率数学模型,研究了66 kV电压等级交流XLPE电缆在直流电压下的电场分布和空间电荷积累特性。计算结果表明:电缆绝缘层的电场分布和空间电荷积累特性会明显受到温差的影响,当温差为45℃、加压时间为8 h时,低温侧空间电荷密度达0.15C/m~3,此时电场分布发生翻转现象,绝缘层外侧电场强度最大值为6.71 MV/m,该数值低于66 kV电压等级交流电缆绝缘层的电场强度设计值。仿真结果为66 kV电压等级电缆线路的交改直运行奠定了基础。  相似文献   

16.
对10kV架空配电线路综合不停电作业法中涉及到的旁路电缆试验、移动箱变试验的试验方法及内容分别进行了介绍。分析认为:对交联聚乙烯(XLPE)电缆进行直流耐压试验,存在诸多缺点,在对试验方案进行比较和应用新型变频谐振仪后,认为对XLPE电缆应进行交流耐压试验。  相似文献   

17.
10kV交流配电网升级改造不同方案的对比分析   总被引:2,自引:2,他引:0  
选择20kV配电电压等级和采用中压直流配电在现有线路上进行改造升级都能够解决当前国内10kV交流配电网供电能力不足的问题,但每种方案的特点和适用情况各有不同。文中对配电网升级改造的不同方案进行对比分析。首先根据线路的电气绝缘配合要求选择±10kV和±15kV作为待研究的直流配电电压等级。然后,以辐射状配电网为例比较了分别采用10kV交流、20kV交流、±10kV和±15kV直流配电等4种方案时的供电能力,分析了采用不同方案时运行效率随总负荷、供电半径、中压直流负荷及分布式电源并网功率等的变化情况。对4种方案的经济性进行了初步的分析。  相似文献   

18.
仿真计算多种敷设方式下的10 kV交流电缆改为三极式直流运行时的温度分布、流场分布和电场分布,结果表明:当电缆改为三极式直流运行后,沟槽敷设时的最大直流电流和最大直流输送功率最大,而排管敷设时的最大直流电流和最大直流输送功率最小;排管敷设时的短路倍数最大,而沟槽敷设时的短路倍数最小。10 kV交流电缆在多种敷设方式下的直流电压等级均可取20 kV。该研究结果可为相关工程提供理论依据。  相似文献   

19.
为了研究热老化对交流配电交联聚乙烯(cross-linked polyethylene,XLPE)电缆改为直流运行后电缆绝缘性能的影响,先对已运行两年的10kV交流XLPE电缆样段进行135℃加速热老化试验,随后采用车床和特质刀具将电缆样段沿轴向环切得到薄片试样,通过直流电导率、空间电荷测量、表面电位衰减和直流击穿测试,结合载流子迁移率、活化能和陷阱参数的计算,对老化前后交流配电XLPE电缆的直流绝缘性能进行研究.结果 表明:随着老化时间的增加,交流XLPE电缆绝缘试样的直流电导率和载流子迁移率先下降后上升,长期老化后空间电荷积累阈值场强与试样的活化能明显减小,试样的直流电导率随着测量温度的升高而增加,其空间电荷积累阈值场强随着测量温度的升高而减小;随着老化时间的增加,试样中积累的空间电荷由异极性转变为同极性,深陷阱数量与直流击穿场强均呈现先上升后下降的趋势;分析认为短期热老化有利于提高交流配电XLPE电缆改为直流运行后的直流绝缘性能.  相似文献   

20.
为合理选择特高压交流线路参数测试设备,确保测试人员和试验设备安全;同时为有效开展测试结果的干扰分析,有必要分析1 000 kV特高压交流线路上的静电感应电压。调查了1 000 kV皖电东送特高压交流输电线路皖南—浙北段邻近±800 kV、±500 kV直流线路分布情况,分析了±800 kV、±500 kV直流线路在特高压交流线路上产生静电耦合电压的影响因素,仿真计算得到了邻近直流线路在1 000 kV特高压同塔双回线路上产生的感应电压。结果表明:皖南—浙北段特高压交流输电线路平行于多条±800 kV、±500 kV直流线路。邻近直流线路单极运行时,特高压交流线路上的感应电压为8~70 kV,明显高于双极运行时的感应电压0.5~10 kV。邻近直流线路单极运行时,随着接近距离的增加,特高压交流线路上感应电压的减小速率很缓慢,明显小于双极运行情况;最近距离由50 m增加至200 m时,单极运行工况下的感应电压减小约10%,而双极运行工况下的感应电压几乎减小至0。由于不同相别导线的位置差异,各相导线上的感应电压值存在明显差异;邻近直流线路单极运行时,不同相别导线感应电压的最大值、最小值相差4~7倍。研究结果为1 000 kV同塔双回线路参数现场测试提供了重要参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号