首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 566 毫秒
1.
当感应电能传输(inductive power transfer,IPT)系统为轨道机车负载供电时,其发射线圈通常采用长D型结构,但D型结构作为发射线圈会产生严重的电磁干扰问题,本文利用8字型线圈结构作为发射线圈,同时考虑到利用传统D型接收线圈时,因发射线圈与接收线圈间的互感值变化幅度大,使得其IPT系统输出功率严重失衡甚至无功率输出,这样严重影响IPT系统的稳定运行,因此本文将DDQ型结构作为接收线圈以改善IPT系统的功率特性。最后,构建一个基于8字型发射线圈以及DDQ型接收线圈的IPT实验系统。实验验证了该方法可以有效改善其功率特性。  相似文献   

2.
感应电能传输(IPT)系统在采用分段供电模式时,由于跨区段处励磁磁场强度分布不均,总会引起负载端拾取功率波动,影响系统稳定性及性能。针对IPT系统跨区段供电的输出稳定问题,以LCL谐振电路并联的IPT系统为研究对象,设计一种基于双自由度鲁棒控制的恒压输出策略。借助广义状态空间平均建模方法,结合跨区段处的互感扰动规律,建立参数不确定性模型;基于广义混合灵敏度指标,通过改变输出加权函数增益,得到快速抑制互感扰动影响的H∞鲁棒控制器;在此基础上,推导并设计出用于修正参考输入的前置滤波器;实验结果表明,双自由度鲁棒控制不仅对跨区段互感扰动影响具有较好抑制作用,且能明显改善对参考输入的跟踪响应性能。  相似文献   

3.
为提高电动汽车无线充电在变负载条件下的线圈抗偏移能力,提出一种基于双D形正交(double-Dquadrature,DDQ)混合拓扑的感应电能传输(inductive power transfer,IPT)系统参数配置及优化方法。结合DDQ线圈的自解耦特性,分别采用一次侧与二次侧对称的LCL谐振网络、LC串联谐振网络,构成系统的双能量传输通道;进一步通过配置相应的电感与电容值,使两通道的输出电流均与负载无关,而分别与线圈互感成正比与反比关系,基于电流叠加方式达到变负载条件下恒流输出的目的。在此基础上,分析恒流输出下的DDQ线圈互感变化规律,并通过优化参数Lt1与Lt2,使IPT系统可允许的拾取偏移最大。仿真与实验结果表明,在所容许0%~49.3%的互感变化范围内,二次侧输出电流在变负载条件下均具有不超过±5%的稳流效果。  相似文献   

4.
传统无线电能传输系统对拾取结构的方向性较为敏感,拾取机构角度变化将会较大地影响系统功率传输特性。针对无线电能传输系统三维空间内多自由度拾取问题,该文提出一种基于正四面体的电能拾取机构,给出拾取电感摆放位置及连接方式,完成拾取机构磁通分析,提出拾取机构在空间内旋转时不同绕线方式的互感计算方法,设计拾取线圈的最优绕线方案,通过Maxwell有限元仿真获得拾取线圈间的相互耦合关系。实验结果表明:当耦合机构以任意角度旋转时,系统多自由度运行的效率维持在60%,负载功率维持在30W。此种类型的拾取机构不仅能提升系统的多自由度拾取能力,还可以保持输出的稳定性,减小系统对输出控制环节的依赖,减小拾取装置体积。  相似文献   

5.
多拾取线圈能够有效提高感应电能传输系统的输出功率,满足轨道车辆等大功率场合的需求。但由于制作工艺等因素的影响,各拾取线圈的自感存在着一定的差异,导致各拾取模块谐振频率不一致,从而引起输出电流不均衡并降低系统输出功率。首先分析了拾取线圈自感参数不一致带来的电流不均衡问题以及降低输出功率的原因;为消除自感参数差异导致的电流不均衡,提出了一种采用相邻拾取线圈间互感补偿拾取线圈自感差异的机理和方法,并给出补偿电容的设计方法,使各拾取模块的输出功率不受线圈间互感的影响。基于研制的感应电能传输工程样机的实验结果表明,该方法能够实现各拾取线圈输出电流的均衡,同时提高系统输出功率。  相似文献   

6.
为减小移动供电过程中的功率波动,提出一种基于双拾取耦合结构的动态无线电能传输系统。通过采用相互重叠的双拾取线圈,保证了2个拾取的互感平方和是一个与拾取位置无关的常数,并在双拾取线圈之间引入互感,补偿了移动过程中单个拾取的互感零点。推导每个拾取输出功率随等效负载电阻的变化规律,找出使系统输出功率恒定的等效负载电阻值,通过控制每个拾取的实际等效负载电阻,可以实现系统输出功率的恒定。最后,搭建实验平台,验证动态移动过程中系统恒功率输出特性。实验结果表明,在移动供电过程中,系统功率和电流在各个拾取之间平均分配,总输出功率的波动率为±2%。  相似文献   

7.
高伟  朱天  刘杨  孙少华 《江苏电器》2023,(10):12-17+23
海洋复杂的洋流运动冲击会使耦合器初级侧、次级侧线圈相对位置发生变化,导致初级侧线圈与次级侧线圈互感发生变化,对感应电能传输(IPT)系统的传输性能造成影响。研究了海流冲击下IPT系统耦合线圈错位对传输性能的影响,建立了IPT系统耦合线圈的有限元模型,通过实验验证了在一侧耦合线圈发生横向、轴向及有角度的偏转时IPT系统的输出电压、电流以及输出功率、传输效率的变化。  相似文献   

8.
基于传统LCL补偿拓扑IPT电路,该文将LCL拓扑中用于补偿的电感替换为一对耦合线圈,既可保证电路谐振,线圈间互感又为系统提供了一个新的能量传输通道,即一种双耦合LCL拓扑IPT系统。首先介绍了DDQ线圈结构与双耦合LCL拓扑电路的特点;理论结果表明,与传统单耦合LCL拓扑IPT系统的传输效率相比,所提出的双耦合LCL系统效率提升了0.8%。此外,该文还提出了一种将LCL拓扑切换为SS补偿拓扑的方法,有效提高系统在偏移时的功率输出能力。最后,通过实验验证了该系统的有效性与抗偏移能力:正对时两对耦合线圈传输功率分别为233W和392W,效率达95.5%;在偏移0~17cm范围内,输出功率始终高于500W,传输效率始终高于88.7%。  相似文献   

9.
双发射线圈的感应电能传输(inductive power transfer,IPT)系统能够实现有效分配两逆变器的输出功率,是提高电源侧输出容量的有效手段。该文分析了功率输出1:1工况下的双发射线圈的IPT系统的动态特性,旨在通过IPT系统的小信号模型求解合适的数字PI控制器,提高负载电压动态响应特性,同时保证闭环系统具有充足的稳定裕度。首先,利用广义状态空间平均建模方法对IPT系统进行大信号模型及稳态工作点的分析。在此基础上,建立描述在IPT系统的输入受到扰动状态下的小信号模型。然后,借助Matlab中PIDtool工具箱设计合适的PI控制器参数,提高IPT系统负载电压响应性能,同时验证了闭环小信号模型具有充足的相角稳定裕度。最后,将闭环小信号模型分别与Simulink仿真模型、实验系统进行变电压动态响应对比,IPT系统的负载电压响应时间在13ms左右,与理论设计值相符,证明闭环小信号模型能准确描述系统动态响应。  相似文献   

10.
针对双拾取无线电能传输系统的系统功率分配问题,利用阻抗分析方法分析了LCL-S型拓扑结构下系统功率以及系统效率的影响因素,并提出一种在满足负载功率需求条件下的系统效率最优的功率分配策略。该控制策略根据系统负载功率和耦合机构互感优化拾取端的功率分配,实现功率传输和效率的优化控制。最后,通过仿真与实验验证了理论分析的正确性。  相似文献   

11.
松耦合感应电源性能的影响因素分析   总被引:6,自引:0,他引:6  
本文针对串并补偿结构的松耦合感应电源系统,建立了互感模型,分析了输出功率和传输效率达到最大值的条件,得出了系统在谐振频率工作时输出功率和传输效率只与映射阻抗的实部和线圈内阻有关的结论.最后根据实验参数,分析了工作频率、线圈内阻和负载变化对系统性能的影响.  相似文献   

12.
无线电能传输功率稳定性分析对其能否安全稳定工作具有重要意义。本文采用等效电路理论对串并式结构进行了研究,获取了输出功率与线圈互感之间的关系,推导出一般形状接收线圈与矩形导轨之间的互感计算公式。考虑固定负载移动供电的情况,研究了影响互感的因素,采用仿真软件得出了不同形状接收线圈与轨道之间的互感与影响互感的因素之间的关系曲线,以及功率与影响互感的因素之间的关系曲线,分析了接收线圈形状对输出功率稳定性的影响。设计了无线电能传输功率稳定性验证实验方案,搭建了实验平台,进行了实验验证。分析与实验表明,当固定负载移动供电系统工作在谐振频率,发射轨道为矩形、接收线圈面积一定时,采用正方形接收线圈传输功率的稳定性更好。  相似文献   

13.
双中继和三中继线圈位置参数对无线电能传输功率的影响   总被引:1,自引:0,他引:1  
提出使用带多个中继线圈的电磁谐振式无线电能传输技术来解决智能电网中高压侧电子设备的供电可靠性和稳定性问题。建立了多中继线圈无线电能传输的理论模型,给出了线圈互感、负载功率和传输效率的计算方法,对双中继和三中继情况下线圈间距变化时的负载功率和传输效率及总距离一定时中继线圈位置的变化对传输功率的影响进行了仿真计算,得到了负载功率最大时的线圈位置和对应的传输效率,并进行了实验验证。结果表明,双中继和三中继时,中继线圈能够大大提高传输的功率、效率和距离;负载功率最大时,中继线圈位置并非等距排列,对不同参数的系统需要进行仿真计算和实验来确定中继线圈的最佳位置。  相似文献   

14.
三线圈感应耦合电能传输(ICPT)系统在给定工作频率下,中继线圈与原级线圈、负载线圈间的互感及负载大小是影响系统电能传输效率的主要因素。针对线圈间互感与线圈位置的相互约束关系,提出一种在任意给定原级线圈和负载线圈条件下的中继线圈位置优化模型。该模型以电能传输效率为优化目标,综合考虑三个线圈相互间的互感和负载等参数,通过计算机辅助设计,解决了寻找中继线圈最优位置的问题,理论和实验结果具有较好的一致性,且展示出中继线圈的最优位置与负载大小密切相关。  相似文献   

15.
线圈之间的互感是感应电能传输(IPT)系统设计的一个关键参数,准确地计算两个线圈之间的互感是优化IPT系统结构及提高传输效率的理论依据。该文利用二阶矢量位建立了两个矩形螺线线圈之间互感的解析模型。首先,将矩形螺线线圈简化为一系列矩形截面的同轴单矩形线圈,从而将矩形螺线线圈的磁场分布及其互感计算问题转为多个同轴单矩形线圈相应问题的叠加。然后,基于二阶矢量位公式,推导了矩形发射线圈的标势表达式,并在此基础上计算了穿过矩形接收线圈的磁通量。最后,推导了含有二重广义积分项的矩形螺线线圈互感的解析表达式,并以两个相同形状的矩形螺线线圈为例进行了模型验证,计算结果与实验测量值吻合良好。该方法可以为使用矩形螺线线圈作为耦合器件的IPT系统提供参数优化依据。  相似文献   

16.
为提高动态无线电能传输系统的控制速度并保证移动供电时的电压稳定性和高效率,提出了一种基于双拾取耦合结构的互感估计控制方法。通过建立系统电压和输出功率的数学模型,分析了最优控制占空比与互感以及每个拾取电路等效串联电阻的关系,给出了一种通过直接计算占空比的闭环控制方法。在与发射端无通信连接的情况下,该控制方法能够提高拾取端电路的控制速度,且可以同时实现恒压输出与效率优化。实验结果表明,采用该控制方法的动态无线电能传输系统,在移动时负载侧输出电压能够保持恒定,输出电压的波动率为?0.988%,系统最高效率达93.18%,实验证明了所给出控制方法的有效性。  相似文献   

17.
在多负载多线圈无线电能传输系统中,非期望耦合线圈之间的磁场交叉耦合导致系统建模复杂以及各路负载恒压设计难以实现。为此,本文提出多层结构的隔离方案以实现非期望耦合线圈间的磁交叉去耦,基于此,给出多路负载无源恒压输出设计。在磁交叉去耦方案中,采用三层结构(铁氧体-铝-铁氧体)的隔离方案对同轴线圈的非期望耦合进行去耦,采用双层结构(铁氧体-铝)实现对非同轴线圈的磁交叉去耦。把所提的磁交叉去耦方案应用到一个三负载六线圈的级联式无线电能传输系统中,系统中非期望耦合线圈间的互感降低至小于原来的6%,而期望耦合线圈间的互感得到一定提升。进一步利用T参数矩阵法设计出无源补偿网络,实现各路负载恒压特性。最后实验结果表明,各路负载在10~100Ω的变化范围内负载的最大电压偏差不超过其设计值的9.3%。  相似文献   

18.
针对谐振式无线电能传输(WPT)系统在传输距离和负载变化时引起输出电压不稳定的问题,提出一种“88Q”线圈耦合装置,结合LCC/S与S/LCC型负载无关恒压谐振拓扑可实现平面线圈的三维抗偏移恒压输出。给出了“88Q”线圈的空间位置和特征参数,分析线圈激发磁场的分布特性、线圈水平偏移和改变传输距离情况下线圈互感变化趋势。最后,搭建系统实验平台。实验结果表明,系统负载变化或耦合装置发生偏移时,均可实现恒压输出。  相似文献   

19.
针对一类既需多级输出又能延长传输距离的无线电能传输(WPT)场合,从磁耦合谐振基本原理出发,结合多中继结构与多负载结构的优势,设计了一种新型三线圈双负载WPT系统.该系统选用LCC-Multi-S型补偿拓扑,在传统双线圈系统中加入一级特殊的接收线圈,设计了两级接收线圈结构,推导了系统双负载恒压输出条件,实现了两级负载端的相同功率输出,同时系统WPT距离得到延长.仿真和实验验证了提出的方案的可行性.  相似文献   

20.
提升逆变器输入侧直流电压源的电压等级,是实现更大功率无线电能传输的可行方案之一。但单个开关器件的额定电压有限,满足不了更高输入电压的需求。为此,文章设计了一种输入串联输出等效并联多逆变器驱动的高压大功率无线电能传输系统。该系统采用多个逆变器串联以承担较高的输入直流电压,同时每个逆变器驱动一个独立的发送线圈向同一个接收线圈发送功率。文章在考虑多个发送线圈之间互感的情况下对该系统的谐振电路参数进行了设计,分析在零相差(Zero Phase Angle,ZPA)及非零相差两个条件下系统的电流和功率输出能力,发现了运行角频率及互感的乘积对系统输出能力具有重要影响。开发出由三个逆变器串联驱动的无线电能传输样机,在750 V直流输入条件下获得最大38. 4 kW的无线电能传输功率,效率达88. 7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号