首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Net-shaped porous Ti-rich Ti51Ni49 alloy with well-controlled porosity, pore size, and pore shape are fabricated by pressing-and-sintering compacts containing fine Ti and Ni powders and coarse NaCl powders. After sintering at 1323 K (1050 °C) for 30 minutes in a high vacuum, the NaCl space holder is removed by evaporation, and the remaining Ti and Ni powders are sintered with about 2.3 vol pct liquid phase. The sintered Ti51Ni49 compacts have porosities of 26, 64, 70, 78, and 85 pct, and no distortion is observed. DSC tests show that the M S temperature and ΔH are about 347 K (74 °C) and 28 J/g, respectively, and that they are almost independent of the porosity and close to those of wrought Ti-rich TiNi alloys. These porous Ti51Ni49 compacts exhibit a homogeneous microstructure, and the compressive properties and porosity are close to those of human bones.  相似文献   

2.
Aluminum-borax powder mixtures were ball milled and heated above 873 K (600 °C) to produce Al-B master alloys. Ball-milled powder blends reveal interpenetrating layers of deformed aluminum and borax grains that are increasingly refined with increasing milling time. Thermal exposure of the ball-milled powder blends facilitates a series of thermite reactions between these layers. Borax, dehydrated during heating, is reduced by Al, and B thus generated reacts with excess Al to produce AlB2 particles dispersed across the aluminum grains starting at 873 K (600 °C). AlB2 particles start to form along the interface of the aluminum and borax layers. Once nucleated, these particles grow readily to become hexagonal-shaped crystals that traverse the aluminum grains with increasing temperatures as evidenced by the increase in the size as well as in the number of the AlB2 particles. Ball milling for 1 hour suffices to achieve a thermite reaction between borax and aluminum. Ball milling further does not impact the response of the powder blend to thermal exposure. The nucleation-reaction sites are multiplied, however, with increasing milling time and thus insure a higher number of smaller AlB2 particles. The size of the AlB2 platelets may be adjusted with the ball milling time.  相似文献   

3.
With its well-known popularity in structural applications, considerable attention has recently been paid to iron (Fe) and its oxides for its promising functional applications such as biodegradable implants, water-splitting electrodes, and the anode of lithium-ion batteries. For these applications, iron and its oxides can be even further utilized in the form of porous structures. In order to control the pore size, shape, and amount, we synthesized Fe foams using suspensions of micrometric Fe2O3 powder reduced to Fe via freeze casting in water or liquid camphene as a solvent through sublimation of either ice or camphene under 5 pct H2/Ar gas and sintering. We then compared them and found that the resulting Fe foam using water as a solvent (p?=?71.7 pct) showed aligned lamellar macropores replicating ice dendrite colonies, while Fe foam using camphene as a solvent (p?=?68.0 pct) exhibited interconnected equiaxed macropores replicating camphene dendrites. For all directions with respect to the loading axis, the compressive behavior of the water-based Fe foam with a directional elongated wall pore structure was anisotropic (11.6?±?0.9 MPa vs 7.8?±?0.8 MPa), whereas that of the camphene-based Fe foam with a random round pore structure was nearly isotropic (12.0?±?1.1 MPa vs 11.6?±?0.4 MPa).  相似文献   

4.
This article introduces an improvement to the fabrication of aluminum foams with small pore size by melt foaming method. Before added to the melt, the foaming agent (titanium hydride) was pretreated in two steps. It firstly went through the traditional pre-oxidation treatment, which delayed the decomposition of titanium hydride and made sure the dispersion stage was controllable. Then such pre-oxidized titanium hydride powder was mixed with copper powder in a planetary ball mill. This treatment can not only increase the number of foaming agent particles and make them easier to disperse in the melt, which helps to increase the number of pores, but also reduce the amount of hydrogen released in the foaming stage. Therefore, the pore size could be decreased. Using such a ball-milled foaming agent in melt foaming method, aluminum foams with small pore size (average size of 1.6 mm) were successfully fabricated.  相似文献   

5.
Air plasma spraying was used to produce Al-SiC p composites as electronic packaging material. Ballmilled Al with 55 and 75 vol. pct SiC powders was repeatedly deposited onto a graphite substrate, and then mechanically removed to get free-standing 100 × 100 mm composite plates of about 2-mm thickness. Different input electrical powers were employed at two spray distances of 100 and 120 mm. The SiC volume fraction and porosity in the sprayed composites were found to be dependent on spray conditions, especially input electrical power. Maximal SiC volume fraction can be obtained at a low input electrical power for the composite sprayed from the Al-55SiC powder and a high input electrical power for Al-75SiC powder. The variation of the SiC level in the composites with spray conditions and SiC size is discussed based on the characteristic of feedstock, the characteristic of deposited surface, and the heat and momentum transfer between particle and plasma flame. Pores in the sprayed composites were found inside one sprayed layer (inner-layer pore) and at the boundary between two sprayed layers (interlayer pore). The formation mechanisms of two types of pores are also explained. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses indicate that Si phase is formed in the sprayed composites for most spray conditions. The Si resulted from the decomposition of SiC particles in high-temperature plasma flame.  相似文献   

6.
Cast particulate composites, containing in-situ generated reinforcing particles of alumina, have been developed by solidification of slurry obtained by dispersion of externally added manganese dioxide particles (MnO2) in molten aluminum, and alumina is formed by reaction of manganese dioxide with molten aluminum. The chemical reaction also releases manganese into molten aluminum. Magnesium is added to the melt in order to help wetting of alumina particles by molten aluminum and to retain the particles inside the melt. The present work aims to understand the influence of key parameters such as processing temperature, time, and the amount of MnO2 particles added on the microstructure and mechanical properties of the resulting cast in-situ composites. The sequence of addition of MnO2 particles and magnesium has significant influence on the microstructure and mechanical properties. Increasing processing temperature and time increases the extent of reduction of MnO2 particles, generating more alumina particles as well as releasing more manganese to the matrix alloy. Alumina helps to nucleate finer and sometimes blocky MnAl6 in the matrix of the composite and thereby results in relatively higher ductility and increased strength in the composite as compared to the base alloy of similar composition. Even in the presence of relatively higher porosity of 8 to 9 vol pct, one observes a percent elongation not below 7 to 8 pct, which is considerably higher than those observed in cast Al(Mg)-Al2O3 composite synthesized by externally added alumina particles.  相似文献   

7.
Al-3.7 pct Si-0.18 pct Mg foams strengthened by AlN particle dispersion were prepared by a melt foaming method, and the effect of foaming temperature on the foaming behavior was investigated. Al-3.7 pct Si-0.18 pct Mg alloy containing AlN particles was prepared by noncompressive infiltration of Al powder compacts with molten Al alloy in nitrogen atmosphere, and it was foamed at different foaming temperatures ranging from 1023 to 1173 K. The porosity of prepared foam decreases and the pore structure becomes homogeneous with increasing foaming temperature. When the foaming temperature is higher than 1123 K, homogeneous pores are formed in the prepared ingot without using oxide particles and metallic calcium granules, which are usually used for stabilizing a foaming process. This stabilization of the foaming at high temperatures is possibly caused by Al3Ti intermetallic compounds formed at high temperature and AlN particles. Compression tests for the prepared foams revealed that the absorbed energy per unit mass of prepared Al-3.7 pct Si-0.18 pct Mg foam is higher than those of aluminum foams strengthened by alloying or dispersion of reinforcements. It is remarkable that the oscillation in stress, which usually appears in strengthened aluminum foams, does not appear in the plateau stress region of the present Al-3.7 pct Si-0.18 pct Mg foam. The homogeneity in cell walls and pore morphology due to the stabilization of pore formation and growth by AlN and Al3Ti particles is a possible cause of this smooth plateau stress region.  相似文献   

8.
A Fe3Al-Fe3AlC x composite was prepared using reactive liquid processing (RLP) through controlled mixture of carbon steel and aluminum in the liquid state. The microstructure and phases of the composite were assessed using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, optical microscopy, and differential scanning calorimetry. In addition, the density, hardness, microhardness, and elastic modulus were evaluated. The Fe3Al-Fe3AlC x composite consisted of 65 vol pct Fe3Al and 35 vol pct Fe3AlC x (κ). The κ phase contained 10.62 at. pct C, resulting in the stoichiometry Fe3AlC0.475. The elastic modulus of the Fe3Al-Fe3AlC0.475 composite followed the rule of mixtures. The RLP technique was shown to be capable of producing Fe3Al-Fe3AlC0.475 with a microstructure and properties similar to those achieved using other processing techniques reported in the literature.  相似文献   

9.
In this article, a novel method has been used to prepare a copper matrix nanocomposite containing Cu-10 wt pct Cr-10 wt pct Al2O3 by heat treatment of the mechanically activated Cu, Al, and Cr2O3 powder mixture. Structural evolutions were investigated using the X-ray diffraction (XRD) technique. The microstructure of samples was examined using scanning electron microscopy (SEM). It was found that during the milling process, Cu(Al) solid solution and Cu9Al4 phase were formed as the intermediate products, and therefore, Al activity was decreased. Hence, the reduction of Cr2O3 with Al was prevented during the ball milling stage. Further heat treatment carried out under argon atmosphere at 900 °C for 8 hours resulted in completion of Cr2O3 reduction by Al.  相似文献   

10.
Al-SiC nanocomposites were prepared by high energy ball milling of mixtures of pure Al and 50-nm-diameter SiC nanoparticles, followed by spark plasma sintering. The final composites had grains of approximately 100 nm dimensions, with SiC particles located mostly at grain boundaries. The samples were tested in uniaxial compression by nano- and microindentation in order to establish the effect of the SiC volume fraction, stearic acid addition to the powder, and the milling time on the mechanical properties. The results are compared with those obtained for pure Al processed under similar conditions and for AA1050 aluminum. The yield stress of the nanocomposite with 1 vol pct SiC is more than ten times larger than that of AA1050. The largest increase is due to grain size reduction; nanocrystalline Al without SiC and processed by the same method has a yield stress seven times larger than AA1050. Adding 0.5 vol pct SiC increases the yield stress by an additional 47 pct, while the addition of 1 vol pct SiC leads to 50 pct increase relative to the nanocrystalline Al without SiC. Increasing the milling time and adding stearic acid to the powder during milling lead to relatively small increases of the flow stress. The hardness measured in nano- and microindentation experiments confirms these trends, although the numerical values of the gains are different. The stability of the microstructure was tested by annealing samples to 423 K and 523 K (150 °C and 250 °C) for 2 hours, in separate experiments. The heat treatment had no effect on the mechanical properties, except when treating the material with 1 vol pct SiC at 523 K (250 °C), which led to a reduction of the yield stress by 13 pct. The data suggest that the main strengthening mechanism is associated with grain size reduction, while the role of the SiC particles is mostly that of stabilizing the nanograins.  相似文献   

11.
The development of manufacturing technology of Sn-bearing stainless steel inspires a novel concept for using Sn-bearing complex iron ore via reduction with mixed H2/CO gas to prepare Sn-enriched direct reduced iron (DRI). The thermodynamic analysis of the reduction process confirms the easy reduction of stannic oxide to metallic tin and the rigorous conditions for volatilizing SnO. Although the removal of tin is feasible by reduction of the pellet at 1223 K (950 °C) with mixed gas of 5 vol pct H2, 28.5 vol pct CO, and 66.5 vol pct CO2 (CO/(CO + CO2) = 30 pct), it is necessary that the pellet be further reduced for preparing DRI. In contrast, maintaining Sn in the metallic pellet is demonstrated to be a promising way to effectively use the ore. It is indicated that only 5.5 pct of Sn is volatilized when the pellet is reduced at 1223 K (950 °C) for 30 minutes with the mixed gas of 50 vol pct H2, 50 vol pct CO (CO/(CO + CO2) = 100 pct). A metallic pellet (Sn-bearing DRI) with Sn content of 0.293 pct, Fe metallization of 93.5 pct, and total iron content of 88.2 pct is prepared as a raw material for producing Sn-bearing stainless steel. The reduced tin in the Sn-bearing DRI either combines with metallic iron to form Sn-Fe alloy or it remains intact.  相似文献   

12.
During the production of aluminum by carbothermic reduction, large quantities of Al2O and Al vapor are generated. For the process to be economical, the aluminum and energy associated with these species must be captured and used in the process. This is accomplished by reacting them with carbon to form Al4C3. The mechanism and rate of the reactions of gas containing Al and Al2O with various forms of carbon was studied. The Al2O-Al-CO gas was generated by reacting an Al4C3-Al2O3 melt with carbon at high temperatures (2000 °C to 2050 °C). The gas then reacted with carbon at lower temperatures (1900 °C to 1950 °C). The only form of carbon that reacted extensively, forming Al4C3, was wood charcoal; with other forms of carbon, such as metallurgical coke and petroleum coke, primarily only Al2O3 condensed on the surface formed. The rate of formation of Al4C3 on wood charcoal was found to be controlled by the diffusion of Al2O and Al through the Al4C3 product layer, and their effective diffusivities were estimated to be 0.82 and 1.31 cm2/s, respectively. Over 90 pct of the carbide is formed by Al2O and only 10 pct by Al vapor. When an Al4C3-Al2O3 dense slag was formed on the charcoal at lower temperatures (1920 °C to 1930 °C) and then reacted at a higher temperature, it appears that the slag and carbon reacted to form Al4C3 relatively fast. The volume of Al4C3 formed is much greater than that of the original carbon. It is believed that this is the reason the other forms of carbon with lower porosity (25 pct vs 60 pct) did not react significantly. Any amount of Al4C3 formed would quickly fill the pores of the more dense carbon, stopping any further reaction.  相似文献   

13.
Abstract

Closed cell copper foams have been produced through accumulative roll bonding (ARB) using calcium carbonate (CaCO3) as blowing agent. Effects of temperature, time and number of rolling passes on the final porosity of the foam have been investigated. The foam with highest porosity has been achieved at 1100°C for soaking time of 3 min. Structure of composite has also been studied by optical and electron microscopy. The result shows that increasing the number of rolling passes reduces the size of powder and homogeneously distributes the particles within the copper substrate. By reducing the size of the particles, free surfaces of particles increase and the gas releasing sites in the foams are enhanced. Consequently, the final porosity of the composite is enhanced as well. The closed-pore foams have also been examined by modal analysis. It has been found that higher porosity of the final foams results in higher natural frequency and damping index.  相似文献   

14.
In the current study, Ni50Fe50 alloy powders were prepared using a high-energy planetary ball mill. The effects of TiC addition (0, 5, 10, 20, and 30 wt pct) and milling time on the sequence of alloy formation, the microstructure, and microhardness of the product were studied. The structure of solid solution phase, the lattice parameter, lattice strain, and grain size were identified by X-ray diffraction analysis. The correlation between the apparent densities and the milling time is explained by the morphologic evolution of the powder particles occurring during the high-energy milling process. The powder morphology was examined using scanning electron microscopy. It was found that FCC γ (Fe–Ni) solid solution was formed after 10 hours of milling, and this time was reduced to 7 hours when TiC was added. Therefore, brittle particles (TiC) accelerate the milling process by increasing crystal defects leading to a shorter diffusion path. Observations of polished cross section showed uniform distribution of the reinforcement particles. The apparent density increases with the increasing TiC content. It was also found that the higher TiC amount leads to larger lattice parameter, higher internal strain, and lower grain size of the alloy.  相似文献   

15.
We developed a novel process for foaming aluminum and its alloys without using a blowing agent. The process involves a designated apparatus in which molten aluminum and its alloys are first foamed under reduced pressure and then solidified quickly. Foaming was done for pure aluminum (99.99 pct) and AlMg5 alloy not containing stabilizing particles and AlMg5 and AlSi9Mg5 alloys containing 5 vol pct SiO2 particles. We discuss the foaming mechanism and develop a model for estimating the porosity that can be achieved in this process. The nucleation of pores in foams is also discussed.  相似文献   

16.
The effects of reducing agent, CaF2 content, and reaction temperature upon the silicothermic reduction of MnO in the BaO-MnO-MgO-CaF2 (-SiO2) slags were investigated. Mn recovery was proportional to Si activity in the molten alloy. Moreover, 90 pct yield of Mn recovery was obtained under 5 mass pct CaF2 content and 1873 K (1600 °C) reaction temperature. Increasing CaF2 content above 5 pct yielded little or no further increase in Mn recovery, because it was accompanied by increased slag viscosity owing to the precipitation of high melting point compounds such as Ba2SiO4.  相似文献   

17.
The present study deals with the synthesis of 1.0 to 2.0 wt pct nano-TiO2 dispersed Zr-based alloy with nominal compositions 45.0Zr-30.0Fe-20.0Ni-5.0Mo (alloy A), 44.0Zr-30.0 Fe-20.0Ni-5.0Mo-1.0TiO2 (alloy B), 44.0Zr-30.0Fe-20.0Ni-4.5Mo-1.5TiO2 (alloy C), and 44.0Zr-30.0Fe-20.0Ni-4.0Mo-2.0TiO2 (alloy D) by mechanical alloying and consolidation of the milled powders using 1 GPa uniaxial pressure for 5 minutes and conventional sintering at 1673 K (1400 °C). The microstructural and phase evolution during each stage of milling and the consolidated products were studied by X-ray diffraction (XRD), scanning electron microscopy and transmission electron microscopy (TEM), and energy-dispersive spectroscopy. The particle size of the milled powder was also analyzed at systemic intervals during milling, and it showed a rapid decrease in particle size in the initial hours of milling. XRD analysis showed a fine crystallite size of 10 to 20 nm after 20 hours of milling and was confirmed by TEM. The recrystallization behavior of the milled powder was studied by differential scanning calorimetry. The hardness of the sintered Zr-based alloys was recorded in the range of 5.1 to 7.0 GPa, which is much higher than that of similar alloys, developed via the melting casting route.  相似文献   

18.
The mechanical mixing and subsequent compaction of a powder mixture consisting of carrier powder (electrolytic copper (Cu) with particle size of 20–100 μm) with nanopowder modifier compound (powders of silicon carbide (SiC)—50–70%, silicon nitride (Si3N4)—20–30%, sodium hexafluoroaluminate (Na3AlF6)—10–20%) with particle size of 70–100 nm obtained by azide technology of self-propagating high-temperature synthesis (SHS) were investigated. The mixtures containing 2.5, 5, 10, 15% of the modifier were investigated. Mechanical mixing was carried out for 30–45 min at speed of 150 rpm in a Pulverizette-5 planetary mill. An analysis of mixing of the raw powder components was performed. Some physicotechnological properties of the obtained powder mixtures, such as particle size distribution, density, bulk weight, and flowability, are determined. The formation of briquettes—the nanopowder pseudo-ligatures from powder mixtures of composition Cu–(SiC + Si3N4) with different concentration of modifier—was carried out by cold pressing. Compacting of the received mixtures of powders was carried out in cylindrical mold using a PSU-50 hydraulic press under pressure of 85–310 MPa. The dependence of the relative density and porosity of the briquettes on the pressure of pressing is determined. The microstructures of pseudo-ligatures pressed at maximum pressure of pressing are presented. Briquettes—nanopowder pseudo-ligatures with diameter of 25 mm, height up to 2 mm, weight of 5 g, with relative density of 53–85% and porosity of 15–47%—intended for subsequent input to aluminum melt with the aim of inoculation are obtained.  相似文献   

19.
The present paper reports a study on the microstructural evolution during mechanical alloying of W-20wt%Mo using XRD line profile analysis. The W-20wt%Mo powder blends were ball milled using Fritsch Pulverisette P-5 high energy ball mill for varying milling time (0, 5, 10, 15, 20 h) at 300 rpm with 10:1 and 2:1 ball to powder weight ratio. The crystallite size and lattice strain were calculated using Langford method (‘average’ Williamson-Hall Plot). The precision lattice parameter calculation was done using Nelson–Riley method. The effect of milling on alloying behaviour has been investigated using change in relative integrated intensity ratios (I Mo /I W/W(Mo)) of (211) XRD peak. There was complete alloying in case of 10:1 ball to powder weight ratio, whereas half of the Mo (~10 % Mo) was alloyed with 2:1 ball to powder weight ratio. The paper also discusses the applicability of the criteria based on lattice parameter change (peak shift) for alloying behaviour during mechanical milling.  相似文献   

20.
This work was carried out to investigate the effect of different Ti concentrations as a modifying agent on the microstructure and tensile properties of an in-situ Al-15 pctMg2Si composite. Cast, modified, and homogenized small ingots were extruded at 753 K (480 °C) at the extrusion ratio of 18:1 and ram speed of 1 mm/s. Various techniques including metallography, tensile testing, and scanning electron microscopy were used to characterize the mechanical behavior, microstructural observations, and fracture mechanisms of this composite. The results showed that 0.5 pctTi addition and homogenizing treatment were highly effective in modifying Mg2Si particles. The results also exhibited that the addition of Ti up to 0.5 pct increases both ultimate tensile strength (UTS) and tensile elongation values. The highest UTS and elongation values were found to be 245 MPa and 9.5 pct for homogenized and extruded Al-15 pctMg2Si-0.5 pctTi composite, respectively. Fracture surface examinations revealed a transition from brittle fracture mode in the as-cast composite to ductile fracture in homogenized and extruded specimens. This can be attributed to the changes in size and morphology of Mg2Si intermetallic and porosity content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号