首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 0.4 pct C-2 pct Si-1 pct Cr-1 pct Mo steel was quenched and tempered at 773 K (500 °C) and deformed by multi-pass caliber rolling (i.e., warm tempforming). The microstructures and the mechanical properties of the warm tempformed steels were investigated as a function of the rolling reduction. At rolling reductions of more than 28 pct, not only extension of the martensite blocks and/or the packets in the rolling direction (RD) but also a grain subdivision became more significant, and an ultrafine elongated grain (UFEG) structure with a strong ??110??//RD fiber deformation texture was formed after 78 pct rolling. The tensile deformation behavior became significantly anisotropic in response to the evolution of UFEG structure. The longitudinal yield strength (??y) of the quenched and tempered sample increased from 1480 to 1860 MPa through the 78 pct rolling, while the transverse ??y leveled off at around 1600 MPa up to 28 pct rolling. The transverse true fracture stress was also markedly degraded in contrast to the longitudinal one. Charpy impact properties were enhanced at a rolling reduction of 52 pct or more. The 52 pct-rolled sample underwent a ductile-to-brittle transition in the temperature range from 333 K to 213 K (60 °C to ?60 °C), while the 78 pct-rolled sample showed an inverse temperature dependence of the impact toughness because of brittle delamination. The tensile and Charpy impact properties are discussed in association with the microstructural evolution.  相似文献   

2.
This study evaluates the production of magnesium metal from the Zefreh dolomite ore of Central Iran using the Pidgeon process. The investigation consisted of mineralogical and chemical characterization of the dolomite ore, calcining, chemical characterization, LOI (loss on ignition) determination, reduction tests on the calcined dolomite (dolime), using Iranian (Semnan) ferrosilicon and mineralogical, and chemical characterization of the reactants and products. Calcining of dolomite samples was carried out at approximately 1400°C in order to remove CO2, moisture, and other easily volatilized impurities. The dolime was then milled, along with ferrosilicon, thoroughly mixed, and briquetted. The briquettes were heated at 1125°C--1150°C and 500 Pa in a tube reactor for 10--12 hours to extract the magnesium. The ferrosilicon to dolime ratio was determined based on the chemical analyses of the two reactants, using as a guide, and Mintek's Pyrosim software package. Magnesium extraction varied with ferrosilicon addition and with the dolime used, and reach about 80% under optimal conditions. The levels of major impurities encountered in the magnesium crown were similar to those in the crude metal production.  相似文献   

3.
We investigated the effect of flux (lime) addition on the reduction behavior of iron oxide in copper slag by solid carbon at 1773 K (1500 °C). In particular, we quantified the recovery of iron by performing typical kinetic analysis and considering slag foaming, which is strongly affected by the thermophysical properties of slags. The iron oxide in the copper slag was consistently reduced by solid carbon over time. In the kinetic analysis, we determined mass transfer coefficients with and without considering slag foaming using a gas holdup factor. The mass transfer of FeO was not significantly changed by CaO addition when slag foaming was ignored, whereas the mass transfer of FeO when slag foaming was considered was at a minimum in the 20 mass pct CaO system. Iron recovery, defined as the ratio of the amount of iron clearly transferred to the base metal ingot to the initial amount of iron in the slag phase before reduction, was maximal (about 90 pct) in the 20 mass pct CaO system. Various types of solid compounds, including Mg2SiO4 and Ca2SiO4, were precipitated in slags during the FeO reduction process, and these compounds strongly affected the reduction kinetics of FeO as well as iron recovery. Iron recovery was the greatest in the 20 mass pct CaO system because no solid compounds formed in this system, resulting in a highly fluid slag. This fluid slag allowed iron droplets to fall rapidly with high terminal velocity to the bottom of the crucible. A linear relationship between the mass transfer coefficient of FeO considering slag foaming and foam stability was obtained, from which we concluded that the mass transfer of FeO in slag was effectively promoted not only by gas evolution due to reduction reactions but also by foamy slag containing solid compounds. However, the reduced iron droplets were finely dispersed in foamy and viscous slags, making actual iron recovery a challenge.  相似文献   

4.
The development of manufacturing technology of Sn-bearing stainless steel inspires a novel concept for using Sn-bearing complex iron ore via reduction with mixed H2/CO gas to prepare Sn-enriched direct reduced iron (DRI). The thermodynamic analysis of the reduction process confirms the easy reduction of stannic oxide to metallic tin and the rigorous conditions for volatilizing SnO. Although the removal of tin is feasible by reduction of the pellet at 1223 K (950 °C) with mixed gas of 5 vol pct H2, 28.5 vol pct CO, and 66.5 vol pct CO2 (CO/(CO + CO2) = 30 pct), it is necessary that the pellet be further reduced for preparing DRI. In contrast, maintaining Sn in the metallic pellet is demonstrated to be a promising way to effectively use the ore. It is indicated that only 5.5 pct of Sn is volatilized when the pellet is reduced at 1223 K (950 °C) for 30 minutes with the mixed gas of 50 vol pct H2, 50 vol pct CO (CO/(CO + CO2) = 100 pct). A metallic pellet (Sn-bearing DRI) with Sn content of 0.293 pct, Fe metallization of 93.5 pct, and total iron content of 88.2 pct is prepared as a raw material for producing Sn-bearing stainless steel. The reduced tin in the Sn-bearing DRI either combines with metallic iron to form Sn-Fe alloy or it remains intact.  相似文献   

5.
Liquidus in the Al2O3(25 mass pct)-CaO-MgO-SiO2(<20 mass pct) and Al2O3(35 mass pct)-CaO-MgO-SiO2(<20 mass pct) systems were determined experimentally in the high-CaO-containing region at 1873 K (1600 °C). For the Al2O3(35 mass pct)-CaO-MgO-SiO2(<20 mass pct) system, liquidus data were also determined for 1773 K (1500 °C). The equilibrating and quenching technique with subsequent electron probe microanalyzer (EPMA) microanalysis were employed. Based on the data, liquidus lines were constructed for the 25 and 35 mass pct alumina planes at silica contents generally below 20 mass pct. The current results showed a slightly lower solubility of CaO and a higher solubility of MgO at 1873 K (1600 °C) for the 25 mass pct Al2O3 section compared with the existing phase diagram. At 1773 K (1500 °C), the result showed a slightly lower solubility of both CaO and MgO in the 35 mass pct Al2O3 section compared with the existing phase diagram. In addition, the activities of MgO, CaO, and Al2O3 were estimated at 1773 K and 1873 K (1500 °C and 1600 °C) using the phase diagram information.  相似文献   

6.
Energy storage and recovery using the redox reaction of tungsten/tungsten-oxide is proposed. The system will store energy as tungsten metal by reducing the tungsten oxide with hydrogen. Thereafter, steam will be used to reoxidize the metal and recover the hydrogen. The volumetric energy density of W for storing hydrogen by this process is 21 kWh/L based on the lower heating value (LHV) of hydrogen. The main objective of this investigation was to study the kinetics of the reduction process of tungsten oxide (WO3) and determine the optimum parameters for rapid and complete reduction. Theoretical treatment of isothermal kinetics has been extended in the current work to the reduction of tungsten oxide in powder beds. Experiments were carried out using a thermogravimetric technique under isothermal conditions at different temperatures. The reaction at 1073 K (800 °C) was found to take place in the following sequence: WO3 → WO2.9 → WO2.72 → WO2 → W. Expressions for the last three reaction rate constants and activation energies have been calculated based on the fact that the intermediate reactions proceed as a front moving at a certain velocity while the first reaction occurs in the entire bulk of the oxide. The gas–solid reaction kinetics were modeled mathematically in terms of the process parameters. This model of the reduction has been found to be accurate for bed heights above 1.5 mm and hydrogen partial pressures greater than 3 pct, which is ideal for implementing the energy storage concept.  相似文献   

7.
A new sodiothermic reduction process of TiO2 in CaCl2 melt was proposed aimed at fine Ti powder preparation. The chemical analysis and direct potentiometric methods were used to investigate the reaction pathway of sodiothermic reduction in CaCl2 melt. The as-prepared samples were characterized by X-ray diffraction and scanning electron microscopy. It was found that when reductant of Na was added into the CaCl2 melt, Ca2+ was reduced to Ca by Na and Ca dissolved in the CaCl2 melt. The whole melt would have the reducing power with dissolved Ca. Using this melt as a reaction medium, fine and uniform Ti powder with a purity of around 99 mass pct was successfully produced at 1173 K (900 °C). In addition, as the CaCl2 melt could dissolve about 20 mol pct CaO, it was found that the molar ratio of TiO2 and CaCl2 should be 1:20 to eliminate the by-product CaO from the reaction interface within the experimental period to continue the reduction.  相似文献   

8.
Ilmenite produced from the Panxi area in China has high impurities such as Ca and Mg. High-grade titanium (Ti) slag can be obtained by the electric arc furnace process, a traditional method of treating ilmenite. Thus, Ti slag prepared from the Panxi ilmenite contains high CaO and MgO, exceeding 5 pct of the slag content. This high CaO and MgO content confers considerable difficulty in producing titania (TiO2) white using fluidizing chlorination. In this study, a new process named vacuum separation was found to produce high-grade TiO2 materials. The effects of separation temperature and time on the TiO2 grade were studied. The high-grade TiO2 slag, which has 93 pct TiO2, <0.1 pct MgO, <1.2 pct SiO2, and <0.5 pct CaO, can be produced at 1823 K (1550 °C) in 45 minutes through the proposed method.  相似文献   

9.
Martensite reversion treatment was utilized to obtain ultrafine grain size in Fe-18Cr-12Mn-N stainless steels containing 0 to 0.44 wt pct N. This was achieved by cold rolling to 80 pct reduction followed by reversion annealing at temperatures between 973 K and 1173 K (700 °C and 900 °C) for 1 to 10seconds. The microstructural evolution was characterized using both transmission and scanning electron microscopes, and mechanical properties were evaluated using hardness and tensile tests. The steel without nitrogen had a duplex ferritic-austenitic structure and the grain size refinement remained inefficient. The finest austenitic microstructure was achieved in the steels with 0.25 and 0.36 wt pct N following annealing at 1173 K (900 °C) for 100 seconds, resulting in average grain sizes of about 0.240 ± 0.117 and 0.217 ± 0.73 µm, respectively. Nano-size Cr2N precipitates observed in the microstructure were responsible for retarding the grain growth. The reversion mechanism was found to be diffusion controlled in the N-free steel and shear controlled in the N-containing steels. Due to a low fraction of strain-induced martensite in cold rolled condition, the 0.44 wt pct N steel displayed relatively non-uniform, micron-scale grain structure after the same reversion treatment, but it still exhibited superior mechanical properties with a yield strength of 1324 MPa, tensile strength of 1467 MPa, and total elongation of 17 pct. While the high yield strength can be attributed to strengthening by nitrogen alloying, dislocation hardening, and slight grain refinement, the moderate strain-induced martensitic transformation taking place during tensile straining was responsible for enhancement in tensile strength and elongation.  相似文献   

10.
《钢铁冶炼》2013,40(6):474-479
Abstract

In the current work the reactions of magnetite based pellets with large additions of calcite (3%CaO) during reduction have been investigated. This made it possible to use both X-ray diffraction (XRD) and scanning electron microscopy (SEM) to detect reaction phases that normally occur in very small amounts. The main binding phase in the pellets after oxidation was (CaO,MgO,FeO)4(Fe2O3)7, whereas the one commonly reported in the literature is (CaO)(Fe2O3)2. During reduction at 500–700°C severe cracking occurred in these pellets, especially in the calcium ferrite phase. However, the decomposition of this phase began at 600°C, and therefore it is believed that the reason for the cracks is low strength of the phase itself, rather than weakness induced by reduction of the phase. Upon reduction of magnetite into wüstite at 800°C, the calcium began dissolving in the wüstite, and at 900°C porous calciowüstite had formed in the entire sample, except for some remaining magnetite left in the pellet cores.  相似文献   

11.
The direct oxidation of stibnite (Sb2S3) using a gas mixture of nitrogen-oxygen was investigated in a pilot plant. Steady-state pilot operation of 5 and 10 t/d was normally observed during the pilot test of 100 days, and a cleaning experiment of high-antimony molten slag from oxygen-enriched bottom-blown was tested by direct reduction in a laboratory-scale electric furnace. Autogenous smelting was achieved without adding any other fuel, which guaranteed the feasibility and advantage of oxygen-enriched bottom-blown stibnite. Through analysis and calculation, the sulfur dioxide concentration in offgas was more than 8 pct, which meets the requirement for the preparation of sulfuric acid. In the reduction experiment, the effects of added CaO, the ratio of coal (ω = actual weight of coal/theoretical weight of coal), and the slag type on the reduction procedure were considered. The residual slag obtained after reduction averaged less than 1 g/ton Au and less than 1 wt pct Sb. The metal phase contained iron less than 3 wt pct, and the recoveries of Au in the metal phase were more than 98 pct. This process shows significant environmental and economic benefits compared with previous processes.  相似文献   

12.
Influence of microwave treatment on the previously proposed phosphorus removal process of oolitic high phosphorus iron ore (gaseous reduction followed by melting separation) has been studied. Microwave treatment was carried out using a high-temperature microwave reactor (Model: MS-WH). Untreated ore fines and microwaved ore fines were then characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and thermogravimetric analysis (TGA). Thereafter, experiments on the proposed phosphorus removal process were conducted to examine the effect of microwave treatment. Results show that microwave treatment could change the microstructure of the ore fines and has an intensification effect on its gaseous reduction by reducing gas internal resistance, increasing chemical reaction rate and postponing the occurrence of sintering. Results of gaseous reduction tests using tubular furnace indicate both microwave treatment and high reduction temperature high as 1273 K (1000 °C) are needed to totally break down the dense oolite and metallization rate of the ore fines treated using microwave power of 450 W could reach 90 pct under 1273 K (1000 °C) and for 2 hours. Results of melting separation tests of the reduced ore fines with a metallization rate of 90 pct show that, in addition to the melting conditions in our previous studies, introducing 3 pct Na2CO3 to the highly reduced ore fines is necessary, and metal recovery rate and phosphorus content of metal could reach 83 pct and 0.31 mass pct, respectively.  相似文献   

13.
The phase transformation and morphology of calcium phosphate prepared by the electrochemical deposition (ECD) process through alkali treatment and calcination have been characterized using X-ray diffraction (XRD), thermogravimetry and differential thermal analyses (TG/DTA), and scanning electron microscopy (SEM). At the ECD process, when the excess OH? was produced, the reaction of 10Ca2++6PO 4 3? +2OH–→Ca10(PO4)6(OH)2 takes place on the Ti-6Al-4V and the HA is deposited. The XRD results reveal that the as-deposit was mostly composed of dicalcium phosphate dehydrate (Ca2H4P2O9; DCPD) and the minor phase of hydroxyapatite (Ca10(PO4)6(OH)2; HA). After NaOH treatment, all DCPD were converted to HA. Moreover, the content of HA phase increases with ECD potential. After being calcined at 673 K and 873 K (400  °C and 600  °C) for 4 hours, the phase of HA maintained the major phase for an alkali-treated deposited sample. After being calcined at 1073 K (800  °C) for 4 hours, some HA decomposed and caused the minor phases of β-tricalcium phosphate (β-Ca3(PO4)2; β-TCP), calcium pyrophosphate (Ca2P2O7; CPP), and calcium oxide (CaO) formation. The β-TCP becomes the major phase with residual HA and CaO after being calcined at 1273 K (1000  °C) for 4 hours. The crack forms due to the release of absorbed water from the interior to top surface of sample. For the as-alkali treatment samples, the microstructures were affected by ECD potentials; when the deposited samples after alkali treatment and calcined at 1073 K (800 °C) for 4 hours, the microstructure presents the need-like “preforming HA” (pre-HA) from the matrix of plate-like postforming HA (post-HA).  相似文献   

14.
The slag composition plays a critical role in the formation of inclusions and the cleanliness of steel. In this study, the effects of FeO content and the C/A (CaO/Al2O3) ratio in the slag on the formation of inclusions were investigated based on a 10-minute slag–steel reaction in a MgO crucible. The FeO content in the top slag was shown to have a significant effect on the formation of MgO·Al2O3 spinel inclusions, and critical content exists; when the initial FeO content in the slag was less than 2 pct, MgO·Al2O3 spinel inclusions formed, and the T.O (total oxygen) was 20 ppm; when the initial FeO content in the slag was more than 4 pct, only Al2O3 inclusions were observed and the T.O was 50 ppm. It was clarified that the main source of Mg for the MgO·Al2O3 spinel inclusion formation was the top slag rather than the MgO crucible. In addition, the cleanliness of the steel increased as the initial FeO content in the top slag decreased. As regards the effects of the C/A ratio, the MgO amount in the observed inclusions gradually increased, whereas the T.O content decreased gradually with the increasing C/A ratio. Slag with a composition close to the CaO-saturated region had the best effect on the inclusion absorption.  相似文献   

15.
S. Mishra  G. G. Roy 《钢铁冶炼》2018,45(5):426-433
The effect of CaO on the reduction behaviour of iron ore–coal composite pellets has been studied in a laboratory scale multi-layer bed rotary hearth furnace at 1250°C for 20?min. Reduced pellets have been characterised through weight loss, porosity measurement, phase analysis by XRD, and morphology study by SEM. The addition of CaO to the composite pellets showed different effects at different carbon levels. For higher carbon-containing pellets (C/Fe2O3 molar ratio at the upper stoichiometric level of 3), the addition of CaO increased the extent of reduction for all three layers significantly up to a certain limit (4?wt-%); and thereafter the degree of reduction is decreased with a further increase in CaO percentage in the pellets. For low carbon-containing pellets (C/Fe2O3 molar ratio of 1.66), the addition of CaO to the pellets did not show any beneficial effect.  相似文献   

16.
Magnesium production by carbothermic reduction of magnesia with CaF2 in vacuum was investigated experimentally by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and thermodynamic analysis. Thermodynamic calculations indicate that magnesium was generated by a carbothermic reduction among MgO-C system, which should be above 1500 K (1227 °C) (50 Pa). According to the carbothermic reduction analysis, the CaF2 does not participate in the carbothermic process. The experimental results demonstrated that the mass loss increased along with increasing CaF2. The percentage was up to 92 pct with 5 pct CaF2.The reduction degree increased with CaF2 more than it without CaF2 obviously. Considering the reduction degree and economic benefit, 5 pct CaF2 was the optimal choice. The purity of metal magnesium reached 95.59 wt pct, which has perfect crystallization and lamellar structure. CaF2 did not participate in magnesia carbothermic reduction in vacuum; instead, it played a catalytic role during the process.  相似文献   

17.
The wettability of silicon carbide by liquid CaO-SiO2 slags that contain 47 to 60 wt pct SiO2 was studied using the sessile drop wettability technique. The experiments were carried out in Ar and CO atmospheres. A small piece of slag was melted on SiC substrates under different heating regimes up to 1600 °C. It was found that the wetting is not significantly dependent on the temperature and the heating rate. However, the wettability is relatively high, and the wetting is higher for slags that contain lower SiO2 concentrations. Moreover, the wettability between the slags and SiC is dependent on the gas phase composition, and it is higher in Ar than that in CO. When the SiO2 concentration changes from 47 pct wt to 60 pct wt, the wetting angle changes from 20 deg to 73 deg in Ar and from 58 deg to 87 deg in a CO atmosphere. The formation and bursting of gas bubbles also was observed after some contact time, which indicates that the wetting system is a reactive type. However, microscopic studies indicated that no metal phase exists at the slag/silicon–carbide interface. Therefore, it was concluded that chemical reactions between the slag and SiC take place and that SiO2 is slowly reduced to form CO and SiO gases. Based on the experimental data, the dependence of the Girifalco–Good coefficient on the slag composition and the relationship between the interfacial tension of CaO-SiO2 slags and SiC also were estimated.  相似文献   

18.
The purpose of the present work was to determine the mechanism and optimal conditions for desulfurizing bath smelter metal with a CaO-CaF2 flux. The minimum silicon (0.1 pct), or aluminum (0.3 pct), contents in the metal for optimal rates were determined. It was found that 8 to 10 pct CaF2 at 1450 °C is required and that the rate below the CaO-CaF2 eutectic temperature (1360 °C) is very slow. It is proposed that a liquid phase at the surface of the CaO particles is required, which is provided by the addition of CaF2. The Si or Al is required to reduce the number of phases for the reaction from three, when carbon is controlling the oxygen potential, to two when Si or Al is; two-phase reactions are inherently faster than those involving three phases. For the optimal conditions, the rate is controlled by mass transfer of sulfur in the metal to the CaO-CaF2 surface. A simple model for continuous desulfurization indicates 95 pct desulfurization can be achieved at high production rates for metal containing 0.10 to 0.15 pct Si using a CaO-10 pct CaF2 flux at 1450 °C. Formerly Research Associate, Department of Materials Science and Engineering, Carnegie Mellon University  相似文献   

19.
As a consequence of inadequate working methods, excessive losses of lead can occur in the slags of lead blast furnaces. The settling of metallic lead from a slag containing 20.5 pct SiO2, 33.4 pct FeO, 16.8 pct CaO, 12.4 pct ZnO, 0.9 pct S, and 6.1 pct Pb has been studied as a function of the temperature (1200 to 1300 °C), composition (addition of CaO, ZnO, and Fe), and time (up to 2 hours). Under these conditions sufficient, although not total, sedimentation of the metal retained is achieved. The best conditions were obtained at 1260 °C with no modification to the composition of the slag. The settled lead was visible macroscopically in a section of the lower part of the melts.  相似文献   

20.
In this article, mineralogical phase changes and structural changes of iron oxides and phosphorus-bearing minerals during the direct reduction roasting process were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). It has been found that the reduction of hematite follows the following general pathway: Fe2O3 → Fe3O4 → FeO → Fe. The last step of the reduction process contains two side reactions: either FeO → Fe2SiO4 → Fe or FeO → FeAl2O4 → Fe depending on the micro mineralogical makeup of the ore. In the reduction process of FeO → Fe, oolitic structure was destroyed completely and fluorapatite was diffused into gangue while metallic phase is coarsening at temperatures below 1200°C. Therefore, the separation of phosphorus-bearing gangue and metallic iron can be achieved by wet grinding and magnetic separation, and low phosphorus content metallic iron powder can be obtained. However, when the temperature reached 1250°C and beyond, some of the fluorapatite was reduced to elemental P and diffused into the metallic iron phase, making the P content higher in the metallic iron powder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号