首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The growth behavior of interfacial intermetallic compounds (IMCs) of SnAgCu/Cu soldered joints was investigated during the reflow process, isothermal aging, and thermal cycling with a focus on the influence of these parameters on growth kinetics. The SnAgCu/Cu soldered joints were isothermally aged at 125°C, 150°C, and 175°C while the thermal cycling was performed within the temperature ranges from −25°C to 125°C and −40°C to 125°C. It was observed that a Cu6Sn5 layer formed, followed by rapid coarsening at the solder/Cu interface during reflowing. The grain size of the interfacial Cu6Sn5 was found to increase with aging time, and the morphology evolved from scallop-like to needle-like to rod-like and finally to particles. The rod-like Ag3Sn phase was formed on the solder side in front of the previously formed Cu6Sn5 layer. However, when subject to an increase of the aging time, the Cu3Sn phase was formed at the interface of the Cu6Sn5 layer and Cu substrate. The IMC growth rate increased with aging temperature for isothermally aged joints. During thermal cycling, the thickness of the IMC layer was found to increase with the number of thermal cycles, although the growth rate was slower than that for isothermal aging. The dwell time at the high-temperature end of the thermal cycles was found to significantly influence the growth rate of the IMCs. The growth of the IMCs, for both isothermal aging and thermal cycling, was found to be Arrhenius with aging temperature, and the corresponding diffusion factor and activation energy were obtained by data fitting. The tensile strength of the soldered joints decreased with increasing aging time. Consequently, the fracture site of the soldered joints migrated from the solder matrix to the interfacial Cu6Sn5 layer. Finally, the shear strength of the joints was found to decrease with both an increase in the number of thermal cycles and a decrease in the dwell temperature at the low end of the thermal cycle.  相似文献   

2.
The voids induced by electromigration (EM) can trigger serious failure across the entire cathode interface of solder joints. In this study, alloying and composite approaches showed great potential for inhibiting EM in lead-free solder joints. Microsized Ni, Co, and Sb particles were added to the solder matrix. Cu and Sn particles were added to the melting solder to form in situ Cu6Sn5, which formed a barrier layer in the underbump metallization of flip-chip solder joints. The polarity effect induced by EM was observed to be significantly inhibited in the alloyed and composite solder joints. This indicates that the Sn-Ni, Sn-Co, Sn-Sb, and Cu6Sn5 intermetallic compounds may act as barriers to obstruct the movement of the dominant diffusion species along phase boundaries, which in turn improves the resistance to EM. However, Sb particles could induce crack formation and propagation that might lead to joint fracture.  相似文献   

3.
The microstructural evolution of Cu/Sn-Ag (~5 μm)/Cu Cu-bump-on-line (CuBOL) joints during isothermal annealing at 180°C was examined using a field-emission scanning electron microscope equipped with an electron backscatter diffraction (EBSD) system. Cu6Sn5 and Cu3Sn were the two key intermetallic compound (IMC) species that appeared in the CuBOL joints. After annealing for 24 h (= t), the solder had completely converted to Cu-Sn IMCs, forming an “IMC” joint with Cu/Cu3Sn/Cu6Sn5/Cu3Sn/Cu structure. EBSD analyses indicated that the preferred orientation of the hexagonal Cu6Sn5 (η) was $ (2\bar{1}\bar{1}3) $ , while the preferred orientation was (100) for the monoclinic Cu6Sn5 structure (η′). Upon increasing t to 72 h, Cu6Sn5 entirely transformed into Cu3Sn, and the IMC joint became Cu/Cu3Sn/Cu accordingly. Interestingly, the grain size and crystallographic orientation of Cu3Sn displayed location dependence. Detailed EBSD analyses in combination with transmission electron microscopy on Cu3Sn were performed in the present study. This research offers better understanding of crystallographic details, including crystal structure, grain size, and orientation, for Cu6Sn5 and Cu3Sn in CuBOL joints after various annealing times.  相似文献   

4.
Intermetallic-layer formation and growth in Pb-free solder joints, during solder reflow or subsequent aging, has a significant effect on the thermal and mechanical behavior of solder joints. In this study, the influence of initial intermetallic morphology on growth rate, and kinetics were examined in a Sn-3.5Ag solder reflowed on Cu. The initial morphology of the intermetallic was tailered by cooling in water, air, or furnace conditions. Solder aging was conducted at 100°C, 140°C, and 175°C and aged for 0–1,000 h. Cooling rate, aging temperature, and aging time played an important role on microstructure evolution and growth kinetics of Cu6Sn5 (η) and Cu3Sn (ɛ) intermetallic layers. Prior to aging, faster cooling rates resulted in a relatively planar Cu6Sn5 layer, while a nodular Cu6Sn5 morphology was present for slower cooling. Intermetallic-growth rate measurements after aging at various times, indicated a mixed growth mechanism of grain-boundary and bulk diffusion. These mechanisms are discussed in terms of the initial intermetallic thickness and morphology controlled by cooling rate, diffusion kinetics, and the competition between Cu6Sn5 and Cu3Sn growth.  相似文献   

5.
The thermal reliability of Sn-3Ag-0.5Cu/Au/Pd(P)/Cu solder joints was evaluated in this study. After reflow and subsequent solid-state aging (180°C), the reaction product species at the interface included Cu6Sn5 [or (Cu,Pd)6Sn5] and Cu3Sn, and their growth was strongly dependent on the Pd(P) thickness, δ Pd(P). As δ Pd(P) increased, the growth of Cu6Sn5 was significantly enhanced, while that of Cu3Sn was suppressed. Computer coupling of phase diagrams and thermochemistry (CALPHAD) analysis showed that minor incorporation of Pd (~2?at.%) into the Cu6Sn5 phase decreased the Gibbs free energy of Cu6Sn5 from ?7339?J/mol to ?9191?J/mol. This effect might enhance Sn diffusion in Cu6Sn5 but diminish Cu diffusion in Cu3Sn, thereby facilitating the growth of Cu6Sn5 but retarding that of Cu3Sn. High-speed ball shear (HSBS) test results showed that the mechanical properties of the solder joints were slightly enhanced by an increase in δ Pd(P). These findings suggest that direct deposition of Au/Pd(P) bilayers over the Cu pads can effectively modify the mechanical reliability of solder joints.  相似文献   

6.
The recrystallization of β-Sn profoundly affects deformation and failure of Sn-Ag-Cu solder joints in thermomechanical fatigue (TMF) testing. The numerous grain boundaries of recrystallized β-Sn enable grain boundary sliding, which is absent in as-solidified solder joints. Fatigue cracks initiate at, and propagate along, recrystallized grain boundaries, eventually leading to intergranular fracture. The recrystallization behavior of Sn-Ag-Cu solder joints was examined in three different TMF conditions for five different ball grid array component designs. Based on the experimental observations, a TMF damage accumulation model is proposed: (1) strain-enhanced coarsening of secondary precipitates of Ag3Sn and Cu6Sn5 starts at joint corners, eventually allowing recrystallization of the Sn grain there as well; (2) coarsening and recrystallization continue to develop into the interior of the joints, while fatigue crack growth lags behind; (3) fatigue cracks finally progress through the recrystallized region. Independent of the TMF condition, the recrystallization appeared to be essentially complete after somewhat less than 50% of the characteristic life, while it took another 50% to 75% of the lifetime for a fatigue crack to propagate through the recrystallized region.  相似文献   

7.
In flip chip applications, Cu pillars with solder caps are regarded as next-generation electronic interconnection technology, because of high input/output density. However, because of diffusion and reaction of Sn and Cu during the high-temperature reflow process, intermetallic compounds (IMC) are formed, and grow, at the interface between the cap and the pillar. Understanding the growth behavior of interfacial IMC is critical in the design of solder interconnections, because excessive growth of IMC can reduce the reliability of connections. In this study, the growth of IMC during thermal cycling, an accelerated method of testing the service environment of electronic devices, was studied by use of focused ion beam–scanning electron microscopy. Under alternating high and low-temperature extremes, growth of Cu6Sn5 (η-phase) and Cu3Sn (ε-phase) IMC was imaged and measured as a function of the number of cycles. The total IMC layer grew significantly thicker but became more uniform during thermal cycling. The Cu3Sn layer was initially thinner than the Cu6Sn5 layer but outgrew the Cu6Sn5 layer after 1000 cycles. It was found that, with limited Cu and Sn diffusion, consumption of Cu6Sn5 for growth of the Cu3Sn layer can result in a thinner Cu6Sn5 layer after thermal cycling.  相似文献   

8.
Cu6Sn5 and Cu3Sn are common intermetallic compounds (IMCs) found in Sn–Ag–Cu (SAC) lead-free solder joints with OSP pad finish. People typically attributed the brittle failure to excessive growth of IMCs at the interface between the solder joint and the copper pad. However, the respective role of Cu6Sn5 and Cu3Sn played in the interfacial fracture still remains unclear. In the present study, various amounts of Ni were doped in the Sn–Cu based solder. The different effects of Ni concentration on the growth rate of (Cu, Ni)6Sn5/Cu6Sn5 and Cu3Sn were characterized and compared. The results of characterization were used to evaluate different growth rates of (Cu, Ni)6Sn5 and Cu3Sn under thermal aging. The thicknesses of (Cu, Ni)6Sn5/Cu6Sn5 and Cu3Sn after different thermal aging periods were measured. High speed ball pull/shear tests were also performed. The correlation between interfacial fracture strength and IMC layer thicknesses was established.  相似文献   

9.
The interfacial interaction between Cu substrates and Sn-3.5Ag-0.7Cu-xSb (x = 0, 0.2, 0.5, 0.8, 1.0, 1.5, and 2.0) solder alloys has been investigated under different isothermal aging temperatures of 100°C, 150°C, and 190°C. Scanning electron microscopy (SEM) was used to measure the thickness of the intermetallic compound (IMC) layer and observe the microstructural evolution of the solder joints. The IMC phases were identified by energy-dispersive x-ray spectroscopy (EDX) and x-ray diffractometry (XRD). The growth of both the Cu6Sn5 and Cu3Sn IMC layers at the interface between the Cu substrate and the solder fits a power-law relationship with the exponent ranging from 0.42 to 0.83, which suggests that the IMC growth is primarily controlled by diffusion but may also be influenced by interface reactions. The activation energies and interdiffusion coefficients of the IMC formation of seven solder alloys were determined. The addition of Sb has a strong influence on the growth of the Cu6Sn5 layer, but very little influence on the formation of the Cu3Sn IMC phase. The thickness of the Cu3Sn layer rapidly increases with aging time and temperature, whereas the thickness of the Cu6Sn5 layer increases slowly. This is probably due to the formation of Cu3Sn at the interface between two IMC phases, which occurs with consumption of Cu6Sn5. Adding antimony to Sn-3.5Ag-0.7Cu solder can evidently increase the activation energy of Cu6Sn5 IMC formation, reduce the atomic diffusion rate, and thus inhibit excessive growth of Cu6Sn5 IMCs. This study suggests that grain boundary pinning is one of the most important mechanisms for inhibiting the growth of Cu6Sn5 IMCs in such solder joints when Sb is added.  相似文献   

10.
Solidification of eutectic Sn-Ag solder, with and without Cu6Sn5 composite reinforcements, on copper substrates, was investigated at two different cooling rates. The size, orientation, randomness, and overall morphology of the dendritic microstructure were examined as a function of cooling rate. Cu6Sn5 particle reinforcements were found to act as nucleation sites for dendrites, in addition to sites on the substrate/solder interface. The mechanical properties of these solders were also examined as a function of cooling rate. Solder joints with a lower load-carrying area were found to exhibit higher shear strength, but reduced ductility when compared to solder joints with more load carrying area.  相似文献   

11.
《Microelectronics Reliability》2014,54(9-10):1856-1861
High power modules are still facing the challenges to increase their power output, increase the junction temperature, and increase their reliability in harsh conditions. Therefore this study is doing a detail analysis of the soldering joint between a direct copper bonded substrate and a high power IGBT made with the high lead solder alloy Pb92.5Sn5.0Ag2.5. The intermetallic phases and the microstructure of standard chip to substrate solder joint will be analysed and compared to deteriorated joints coming from modules which have undergone an active thermal cycling. As expected, the as soldered joint was clearly different than solder joints made for ball grid array or small components on PCBs. The as soldered joint shows no sign of Cu6Sn5 intermetallic layer, but instead shows the presence of Ag3Sn particles at the solder–chip interface. Furthermore, the failure mechanisms under active thermal cycling also seem to be different. There is no growth of intermetallic phases and no strong delamination of the device. Instead a large network of intermetallic particles (Ag3Sn) is produced during aging and seems to degrade the solder thermal properties.  相似文献   

12.
In general, formation and growth of intermetallic compounds (IMCs) play a major role in the reliability of the solder joint in electronics packaging and assembly. The formation of Cu-Sn or Ni-Sn IMCs have been observed at the interface of Sn-rich solders reacted with Cu or Ni substrates. In this study, a nanoindentation technique was employed to investigate nanohardness and reduced elastic moduli of Cu6Sn5, Cu3Sn, and Ni3Sn4 IMCs in the solder joints. The Sn-3.5Ag and Sn-37Pb solder pastes were placed on a Cu/Ti/Si substrate and Ni foil then annealed at 240°C to fabricate solder joints. In Sn-3.5Ag joints, the magnitude of the hardness of the IMCs was in the order Ni3Sn4>Cu6Sn5>Cu3Sn, and the elastic moduli of Cu6Sn5, Cu3Sn, and Ni3Sn4 were 125 GPa, 136 GPa, and 142 GPa, respectively. In addition, the elastic modulus of the Cu6Sn5 IMC in the Sn-37Pb joint was similar to that for the bulk Cu6Sn5 specimen but less than that in the Sn-3.5Ag joint. This might be attributed to the strengthening effect of the dissolved Ag atoms in the Cu6Sn5 IMC to enhance the elastic modulus in the Sn-3.5Ag/Cu joint.  相似文献   

13.
The formation and growth of intermetallics in composite solder   总被引:5,自引:0,他引:5  
The formation and growth of intermetallics at the solder/substrate interface are factors affecting the solderability and reliability of electronic solder joints. This study was performed to better understand the diffusion behavior and microstructural evolution of Cu−Sn intermetallics at the composite solder/copper substrate interface for eutectic solder and solder alloys containing particle additions of Cu, Cu3Sn, Cu6Sn5, Ag, Au, and Ni. Annealing temperatures of 110 to 160°C were used with aging times of 0 to 64 days. The copper-containing composite solders generally formed thinner Cu6Sn5 layers, but thicker Cu3Sn layers than were formed by the eutectic solder alone. These copper-containing additions, therefore, resulted in increased activation energies for Cu6Sn5 formation and decreased activation energies for Cu3Sn formation as compared to the eutectic solder. The activation energy for Cu3Sn formation decreased relative to eutectic solder for silver and gold composite solders even though less Cu3Sn was formed at the substrate interface. Nickel and palladium drastically reduced the Cu3Sn thickness and increased the Cu6Sn5 thickness. However, the Cu6Sn5 contained a substantial volume fraction of voids close to the copper substrate. We propose two mechanisms to explain the effects of the copper-containing and silver particles on the kinetics of intermetallic formation. First, the particles act as tin-sinks which remove tin from the solder and decrease the amount of tin available for reaction at the solder/substrate interface. Second, the particles reduce the cross-sectional area available for tin diffusion, which also reduces the amount of tin available at the interface for reaction.  相似文献   

14.
Isothermal solidification of conventional Cu/Sn diffusional couples was performed to form thin (30 μm) joints consisting of Cu-Sn intermetallics. During initial stages of isothermal solidification, both Cu6Sn5 and Cu3Sn phases grow, even though the former is the dominant. After consumption of all available Sn, the Cu3Sn phase grows reactively at the expense of Cu and Cu6Sn5. Finally, we obtain solder joints that consist of only Cu3Sn. Indentation fracture-toughness measurements show that Cu3Sn is superior to Cu6Sn5. Furthermore, indentations of Cu3Sn exhibit the presence of shear bands, which are not observed in Cu6Sn5, implying that the former is more ductile than the latter. Ductile intermetallic-based joints formed by isothermal solidification are promising candidates to form thin (as thin as 5–10 μm or less) solder joints, as they are thermally and thermodynamically stable compared to conventional solder joints. Excess copper in the interconnect provides ductility to the interconnect.  相似文献   

15.
The effects of adding a small amount of Cu into eutectic PbSn solder on the interfacial reaction between the solder and the Au/Ni/Cu metallization were studied. Solder balls of two different compositions, 37Pb-63Sn (wt.%) and 36.8Pb-62.7Sn-0.5Cu, were used. The Au layer (1 ± 0.2 μm) and Ni layer (7 ± 1 μm) in the Au/Ni/Cu metallization were deposited by electroplating. After reflow, the solder joints were aged at 160°C for times ranging from 0 h to 2,000 h. For solder joints without Cu added (37Pb-63Sn), a thick layer of (Au1−xNix)Sn4 was deposited over the Ni3Sn4 layer after the aging. This thick layer of (Au1−xNix)Sn4 can severely weaken the solder joints. However, the addition of 0.5wt.%Cu (36.8Pb-62.7Sn-0.5Cu) completely inhibited the deposition of the (Au1−xNix)Sn4 layer. Only a layer of (Cu1-p-qAupNiq)6Sn5 formed at the interface of the Cu-doped solder joints. Moreover, it was discovered that the formation of (Cu1-p-qAupNiq)6Sn5 significantly reduced the consumption rate of the Ni layer. This reduction in Ni consumption suggests that a thinner Ni layer can be used in Cu-doped solder joints. Rationalizations for these effects are presented in this paper.  相似文献   

16.
Sn-Ag-Cu solder is a promising candidate to replace conventional Sn-Pb solder. Interfacial reactions for the flip-chip Sn-3.0Ag-(0.5 or 1.5)Cu solder joints were investigated after aging at 150°C. The under bump metallization (UBM) for the Sn-3.0Ag-(0.5 or 1.5)Cu solders on the chip side was an Al/Ni(V)/Cu thin film, while the bond pad for the Sn-3.0Ag-0.5Cu solder on the plastic substrate side was Cu/electroless Ni/immersion Au. In the Sn-3.0Ag-0.5Cu joint, the Cu layer at the chip side dissolved completely into the solder, and the Ni(V) layer dissolved and reacted with the solder to form a (Cu1−y,Niy)6Sn5 intermetallic compound (IMC). For the Sn-3.0Ag-1.5Cu joint, only a portion of the Cu layer dissolved, and the remaining Cu layer reacted with solder to form Cu6Sn5 IMC. The Ni in Ni(V) layer was incorporated into the Cu6Sn5 IMC through slow solid-state diffusion, with most of the Ni(V) layer preserved. At the plastic substrate side, three interfacial products, (Cu1−y,Niy)6Sn5, (Ni1−x,Cux)3Sn4, and a P-rich layer, were observed between the solder and the EN layer in both Sn-Ag-Cu joints. The interfacial reaction near the chip side could be related to the Cu concentration in the solder joint. In addition, evolution of the diffusion path near the chip side in Sn-Ag-Cu joints during aging is also discussed herein.  相似文献   

17.
Chip to chip bonding techniques using Cu bumps capped with thin solder layers have been frequently applied to 3D chip stacking technology. We studied the effect of joint microstructure on shear strength. Joints were formed by joining Sn/Cu bumps on a Si die and Sn/Cu layers on another Si die at 245–330°C using a thermo-compression bonder. Three different types of microstructures were fabricated in the joints by controlling the bonding temperature and time, (1) a Sn-rich phase with a Cu6Sn5 phase at the Cu interfaces, (2) a Cu6Sn5 phase in the interior with a Cu3Sn phase at the Cu interfaces, and (3) one single Cu3Sn phase throughout the whole joint. The joint having a single Cu3Sn phase had the highest shear strength. Specimens were aged up to 2000 h at 150°C and 180°C. During aging, the microstructures of all joints were transformed in a single Cu3Sn phase. The shear strength of the joints was very sensitive to the formation of Cu3Sn and microvoids. Microvoids formed in the solder joints with a Cu6Sn5 phase with and without a Sn-rich phase during aging and decreased the shear strength of the joints. Conversely, aging did not induce the formation of microvoids in the joints which originally had only a Cu3Sn phase and the shear strength was not decreased.  相似文献   

18.
The effect of electromigration (EM) on Sn(Cu)/Ni/Cu solder joint interfaces under current stressing of 104 A/cm2 at 160°C was studied. In the pure Sn/Ni/Cu case, the interfacial compound layer was mainly the Cu6Sn5 compound phase, which suffered serious EM-induced dissolution, eventually resulting in serious Cu-pad consumption. In the Sn-0.7Cu case, a (Cu,Ni)6Sn5 interfacial compound layer formed at the joint interface, which showed a strong resistance to EM-induced dissolution. Thus, there was no serious consumption of the Cu pad under current stressing. In the Sn-3.0Cu case, we believe that the␣massive Cu6Sn5 phase in the solder matrix eased possible EM-induced dissolution at the interfacial compound layer due to current stressing.  相似文献   

19.
As the size of joints in micro/nano-electronics diminishes, the role of intermetallic (IMC) layers becomes more significant. It was shown that solder joint strength is controlled largely by IMC strength at higher strain rates. Additionally, there is a possibility that very small joints are completely composed of IMCs. Further miniaturization of joints may result in statistical grain size effects. Therefore, it is essential to characterize IMC materials and understand their anisotropic mechanical properties. One of the most common types of IMCs in microelectronic joints is Cu6Sn5, which is formed in a variety of bonding materials with different compositions of Sn, Cu, and Ag. This work studies through nanoindentation elastic–plastic properties of a single grain of Cu6Sn5 IMC in a Sn-3.5Ag/Cu system with reflow soldering. Elastic properties such as elastic modulus and hardness were determined from the nanoindentation load–depth curve. The reverse analysis model described by Dao et al. was used to extract plastic properties such as yield strength and strain hardening exponent from nanoindentation data. Care was taken to achieve indentation of single grains with sufficient accuracy and repeatability. Electron backscatter diffraction (EBSD) mapping was used to determine orientation of Cu6Sn5 grains and to relate the orientation with the load–depth curve results of nanoindentation and the corresponding elastic and plastic properties. The EBSD results indicated that the Cu6Sn5 crystal structure is hexagonal. Columnar growth of the Cu6Sn5 grains was observed as the grains mostly grew along the c-axis of the crystal. Indentation of different grains parallel to the basal plane showed no significant difference in mechanical properties.  相似文献   

20.
(Cu,Ni)6Sn5 is an important intermetallic compound (IMC) in lead-free Sn-Ag-Cu solder joints on Ni substrate. The formation, growth, and microstructural evolution of (Cu,Ni)6Sn5 are closely correlated with the concentrations of Cu and Ni in the solder. This study reports the interfacial behaviors of (Cu,Ni)6Sn5 IMC (Sn-31 at.%Cu-24 at.%Ni) with various Sn-Cu, Sn-Ni, and Sn-Cu-Ni solders at 250°C. The (Cu,Ni)6Sn5 substrate remained intact for Sn-0.7 wt.%Cu solder. When the Cu concentration was decreased to 0.3 wt.%, (Cu,Ni)6Sn5 significantly dissolved into the molten solder. Moreover, (Cu,Ni)6Sn5 dissolution and (Ni,Cu)3Sn4 formation occurred simultaneously for the Sn-0.1 wt.%Ni solder. In Sn-0.5 wt.%Cu-0.2 wt.%Ni solder, many tiny (Cu,Ni)6Sn5 particulates were formed and dispersed in the solder matrix, while in Sn-0.3 wt.%Cu-0.2 wt.%Ni a lot of (Ni,Cu)3Sn4 grains were produced. Based on the local equilibrium hypothesis, these results are further discussed based on the liquid–(Cu, Ni)6Sn5–(Ni,Cu)3Sn4 tie-triangle, and the liquid apex is suggested to be very close to Sn-0.4 wt.%Cu-0.2 wt.%Ni.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号