首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Li2Mg2TiO5, a rock-salt structured ceramic fabricated by a solid-state sintering technique, was characterized at the microwave frequency band. As a result, a microwave dielectric permittivity (εr) of 13.4, a quality factor of 95,000 GHz (at 11.3 GHz), and a temperature coefficient of resonance frequency (τf) of ? 32.5 ppm/°C have been obtained at 1320°C. Li2Mg2TiO5 ceramics have low permittivity, a broad processing temperature region, and a low loss, making them potential applications in millimeter-wave devices. Furthermore, B2O3 addition efficiently lowered the sintering temperature of Li2Mg2TiO5 to 900°C, which opens up their possible applications in low-temperature co-fired ceramics (LTCC) technology.  相似文献   

2.
0.9Pb(Zr0.53,Ti0.47)O3-0.1Pb(Zn1/3,Nb2/3)O3 (PZT–PZN) thin films and integrated cantilevers have been fabricated. The PZT–PZN films were deposited on SiO2/Si or SiO2/Si3N4/SiO2/poly-Si/Si membranes capped with a sol–gel-derived ZrO2 buffer layer. It is found that the membrane layer stack, lead content, existence of a template layer of PbTiO3 (PT), and ramp rate during film crystallization are critical for obtaining large-grained, single-phase PZT–PZN films on the ZrO2 surface. By controlling these parameters, the electrical properties of the PZT–PZN films, their microstructure, and phase purity were significantly improved. PZT–PZN films with a dielectric constant of 700 to 920 were obtained, depending on the underlying stack structure.  相似文献   

3.
AlGaN/GaN-based metal-insulator-semiconductor heterostructure field-effect transistors (MIS-HFETs) with Al2O3/Si3N4 bilayer as insulator have been investigated in detail, and compared with the conventional HFET and Si3N4-based MIS-HFET devices. Al2O3/Si3N4 bilayer-based MIS-HFETs exhibited much lower gate current leakage than conventional HFET and Si3N4-based MIS devices under reverse gate bias, and leakage as low as 1×10−11 A/mm at −15 V has been achieved in Al2O3/Si3N4-based MIS devices. By using ultrathin Al2O3/Si3N4 bilayer, very high maximum transconductance of more than 180 mS/mm with ultra-low gate leakage has been obtained in the MIS-HFET device with gate length of 1.5 μm, a reduction less than 5% in maximum transconductance compared with the conventional HFET device. This value was much smaller than the more than 30% reduction in the Si3N4-based MIS device, due to the employment of ultra-thin bilayer with large dielectric constant and the large conduction band offset between Al2O3 and nitrides. This work demonstrates that Al2O3/Si3N4 bilayer insulator is a superior candidate for nitrides-based MIS-HFET devices.  相似文献   

4.
The magnetic susceptibilities of Si and Si0.95Ge0.05 alloy whiskers of different diameters have been studied. Its significant difference from the magnetic susceptibility of a bulk material has been found. The presence of paramagnetic centers, some of which form magnetic nanoclusters in samples, is assumed. To explain the experimental results obtained, a model within Langevin superparamagnetism has been suggested. The distribution function of clusters over their magnetic moments has been constructed. The most probable sizes and magnetic moments of clusters are determined.  相似文献   

5.
Mg2(Si0.3Sn0.7)1−y Sb y (0 ≤ y ≤ 0.04) solid solutions were prepared by a two-step solid-state reaction method combined with the spark plasma sintering technique. Investigations indicate that the Sb doping amount has a significant impact on the thermoelectric properties of Mg2(Si0.3Sn0.7)1−y Sb y compounds. As the Sb fraction y increases, the electron concentration and electrical conductivity of Mg2(Si0.3Sn0.7)1−y Sb y first increase and then decrease, and both reach their highest value at y = 0.025. The sample with y = 0.025, possessing the highest electrical conductivity and one of the higher Seebeck coefficient values among all the samples, has the highest power factor, being 3.45 mW m−1 K−2 to 3.69 mW m−1 K−2 in the temperature range of 300 K to 660 K. Meanwhile, Sb doping can significantly reduce the lattice thermal conductivity (κ ph) of Mg2(Si0.3Sn0.7)1−y Sb y due to increased point defect scattering, and κ ph for Sb-doped samples is 10% to 20% lower than that of the nondoped sample for 300 K < T < 400 K. Mg2(Si0.3Sn0.7)0.975Sb0.025 possesses the highest power factor and one of the lower κ ph values among all the samples, and reaches the highest ZT value: 1.0 at 640 K.  相似文献   

6.
We have investigated the critical behavior in amorphous Fe85Sn5Zr10 alloy ribbon prepared using a single-roller melt-spinning method. This alloy shows a second-order magnetic transition from paramagnetic to ferromagnetic (FM) state at the Curie temperature T C (~306 K). To obtain more information on the features of the magnetic transition, a detailed critical exponent study was carried out using isothermal magnetization M (H, T) data in the vicinity of the T C. Modified Arrott plot, Kouvel–Fisher plot, Widom’s scaling relation and critical isotherm analysis techniques were used to investigate the critical behavior of this alloy system around its phase transition point. The values of critical exponents determined using the above methods are self-consistent. The estimated critical exponents are fairly close to the theoretical prediction of the three-dimensional (3D) Heisenberg model, implying that short-range FM interactions dominate the critical behavior in amorphous Fe85Sn5Zr10 alloy ribbon.  相似文献   

7.
In general, formation and growth of intermetallic compounds (IMCs) play a major role in the reliability of the solder joint in electronics packaging and assembly. The formation of Cu-Sn or Ni-Sn IMCs have been observed at the interface of Sn-rich solders reacted with Cu or Ni substrates. In this study, a nanoindentation technique was employed to investigate nanohardness and reduced elastic moduli of Cu6Sn5, Cu3Sn, and Ni3Sn4 IMCs in the solder joints. The Sn-3.5Ag and Sn-37Pb solder pastes were placed on a Cu/Ti/Si substrate and Ni foil then annealed at 240°C to fabricate solder joints. In Sn-3.5Ag joints, the magnitude of the hardness of the IMCs was in the order Ni3Sn4>Cu6Sn5>Cu3Sn, and the elastic moduli of Cu6Sn5, Cu3Sn, and Ni3Sn4 were 125 GPa, 136 GPa, and 142 GPa, respectively. In addition, the elastic modulus of the Cu6Sn5 IMC in the Sn-37Pb joint was similar to that for the bulk Cu6Sn5 specimen but less than that in the Sn-3.5Ag joint. This might be attributed to the strengthening effect of the dissolved Ag atoms in the Cu6Sn5 IMC to enhance the elastic modulus in the Sn-3.5Ag/Cu joint.  相似文献   

8.
Conjugated amino-phthalocyanine copper containing carboxyl groups/magnetite (NH2-CuPc@Fe3O4) has been fabricated from FeCl3·6H2O and NH2-CuPc via a simple solvothermal method and its electromagnetic properties investigated. Scanning electron microscopy and transmission electron microscopy revealed that the NH2-CuPc@Fe3O4 was a waxberry-like nanomaterial with NH2-CuPc molecules effectively embedded in the interior of Fe3O4 particles in the form of beads. Introduction of NH2-CuPc effectively improved the complementarity between the dielectric and magnetic losses of the system, resulting in excellent electromagnetic performance. The minimum reflection loss of the as-prepared composite reached ?33.4 dB at 7.0 GHz for coating layer thickness of 4.0 mm and bandwidth below ?10.0 dB (90% absorption) of up to 3.8 GHz. These results indicate that introduction of NH2-CuPc results in a composite with potential for use as an electromagnetic microwave absorption material.  相似文献   

9.
The growth mechanism of an interfacial (Cu,Ni)6Sn5 compound at the Sn(Cu) solder/Ni(P) interface under thermal aging has been studied in this work. The activation energy for the formation of the (Cu,Ni)6Sn5 compound for cases of Sn-3Cu/Ni(P), Sn-1.8Cu/Ni(P), and Sn-0.7Cu/Ni(P) was calculated to be 28.02 kJ/mol, 28.64 kJ/mol, and 29.97 kJ/mol, respectively. The obtained activation energy for the growth of the (Cu,Ni)6Sn5 compound layer was found to be close to the activation energy for Cu diffusion in Sn (33.02 kJ/mol). Therefore, the controlling step for formation of the ternary (Cu,Ni)6Sn5 layer could be Cu diffusion in the Sn(Cu) solder matrix.  相似文献   

10.
This study focuses on Sb-doped Mg2(Si,Sn) thermoelectric material. Samples were successfully fabricated using a hybrid synthesis method consisting of three different processes: induction melting, solid-state reaction, and a hot-press sintering technique. We found that the carrier concentration increased with Sb content, while the Seebeck coefficient exhibited a decreasing trend. Sb doping was shown to improve the power factor and thermoelectric figure of merit compared with the undoped material, yielding a peak figure of merit (ZT) of ~0.55 at 620 K, while leaving the band gap of Mg2Si0.7Sn0.3 almost unchanged.  相似文献   

11.
The electronic structure of Si46 and Na8Si46 clathrates has been calculated using the linearized augmented plane wave method. The calculation yielded their band structure, total and partial electron densities of states, and SiKβ1, 3 and SiL2, 3 X-ray emission spectra. The calculated and experimental spectra for the Na8Si46 clathrate were compared.  相似文献   

12.
Development of (K,Na)NbO3-based ceramics has attracted much attention in recent decades. In this work, K0.5Na0.5Nb0.7Al0.3O3 ceramic was prepared using conventional solid-state processing. A deliquescence phenomenon was observed when the specimen was exposed to moist atmosphere. The reaction mechanism and cause of deliquescence were investigated using x-ray diffraction analysis, scanning electron microscopy, energy-dispersive spectrometry, electron microprobe analysis, inductively coupled plasma mass spectrometry, and thermogravimetric/differential scanning calorimetric analysis. The results revealed interactions mainly amongst the raw materials K2CO3, Na2CO3, and Nb2O5 as well as K2CO3, Na2CO3, and Al2O3, which can influence the sintering behavior of the mixture. (K,Na)NbO3 and (K,Na)AlO2 were present in the sintered K0.5Na0.5Nb0.7Al0.3O3 ceramic, with the latter leading to deliquescence. During the sintering process, Al2O3 reacts with alkali oxides (Na2O and K2O), which are the decomposition products of carbonates, to form (K,Na)AlO2. In addition, Al2O3 is more likely to react with K2O compared with Na2O.  相似文献   

13.
The study demonstrates the potential application of caffeic acid-functionalized magnetite nanoparticles (CA-Fe3O4 NPs) as an effective electrode modifying material for the electrochemical oxidation of the 6-thioguanine (6-TG) drug. The functionalized Fe3O4 NPs were prepared using simple wet-chemical methodology where the used caffeic acid acted simultaneously as growth controlling and functionalizing agent. The study discusses the influence of an effective functionalization on the signal sensitivity observed for the electro-oxidation of 6-TG over CA-Fe3O4 NPs in comparison to a glassy carbon electrode modified with bare and nicotinic acid (NA)-functionalized Fe3O4 NPs. The experiment results provided sufficient evidence to support the importance of favorable functionality to achieve higher signal sensitivity for the electro-oxidation of 6-TG. The presence of favorable interactions between the active functional moieties of caffeic acid and 6-TG synergized with the greater surface area of magnetic NPs produces a stable electro-oxidation signal within the working range of 0.01–0.23 μM with sensitive up to 0.001 μM. Additionally, the sensor showed the strong anti-interference potential against the common co-existing drug molecules such as benzoic acid, acetaminophen, epinephrine, norepinephrine, glucose, ascorbic acid and l-cysteine. In addition, the successful quantification of 6-TG from the commercial tablets obtained from local pharmacy further signified the practical capability of the discussed sensor.  相似文献   

14.
Because of the poor sintering ability and low phase purity limit in the application of a Na3Zr2Si2PO12 solid electrolyte, it is important to find an effective way to obtain a pure and dense Na3Zr2Si2PO12 ceramic at reduced temperature. In this study, high conductive indium-tin oxide (ITO) was innovatively used as the sintering additive to improve the purity and density of the Na3Zr2Si2PO12 ceramic. The influence of ITO additive on density, phase, microstructure and conductivity of the Na3Zr2Si2PO12 ceramic was investigated. Archimedes method, x-ray diffraction, scanning electron microcopy and complex impedance spectroscopy were used as experimental techniques to evaluate the effect of the additive. The results show that the ITO sintering additive increases not only the purity and density but also the conductivity of the Na3Zr2Si2PO12 ceramic. The Na3Zr2Si2PO12 ceramic with 3 wt.% ITO additive sintered at 1150°C for 4 h possesses a high density of 3.15 g/cm3 and good conductivity of (3.95 ± 0.12) × 10?4 S/cm.  相似文献   

15.
Nanotribological characteristics, including the coefficient of friction, wear coefficient, and wear resistance, of Cu6Sn5, Cu3Sn, and Ni3Sn4 intermetallic compounds developed by the annealing of Sn–Cu or Sn–Ni diffusion couples were investigated in this work. The scratch test conditions combined a constant normal load of 10 mN, 20 mN, or 30 mN and a scratch rate of 0.1 μm/s, 1 μm/s, or 10 μm/s. Experimental results indicated that, as the normal load increases, the pile-up grows taller and the scratch deepens, leading to a greater coefficient of friction and wear coefficient, and reduced wear resistance. Moreover, the scratch rate does not have a significant effect on the nanotribological characteristics except for those of Cu6Sn5 and Cu3Sn under a normal load of 10 mN. Though the hardness of Cu6Sn5, Cu3Sn, and Ni3Sn4 is similar, Ni3Sn4 appears to be more prone to wear damage.  相似文献   

16.
Crystals of the ternary compound FeIn2S4 are grown by directional crystallization of a melt (the horizontal Bridgman method). Composition of the crystals and their crystal structure are determined. Magnetic properties of the FeIn2S4 crystals are studied in the temperature range 4–310 K in magnetic fields of 0–140 kOe. It is shown that the crystals under study are paramagnets up to ∼12 K and their specific magnetic moment monotonically increases with decreasing temperature. The antiferromagnetic character of indirect interactions between Fe2+ cations is established. The most probable causes and the mechanism of the formation of the magnetic state in the FeIn2S4 crystals are discussed.  相似文献   

17.
SrFe12O19/ZnFe2O4 (SrFe11.2Zn0.8O19) nanoparticles having superparamagnetic nature were synthesized by coprecipitation of chloride salts using 7.5 M sodium hydroxide solution. The resulting precursors were heat-treated at 900°C and 1200°C for 4 h in nitrogen atmosphere. During heat treatment (HT), transformation proceeds through instantaneous nucleation and three-dimensional diffusion-controlled growth with an activation energy of 175.9 kJ/mole. The hysteresis loops showed an increase in saturation magnetization from 1.044 emu/g to 61.227 emu/g with increasing HT temperature. As-synthesized particles had sizes in the range of 20 nm to 25 nm with spherical shape. Further, these spherically shaped nanoparticles tended to change their morphology to hexagonal plate and pyramidal shape with increasing HT temperature. The effects of this systematic morphological transformation of nanoparticles on dielectric (complex permittivity and permeability) and microwave absorption properties were estimated in the X-band (8.2 GHz to 12.2 GHz). The maximum reflection loss of the composite powder reached −29.81 dB at 10.37 GHz, making it suitable for application in radar-absorbing materials.  相似文献   

18.
The magnetic susceptibility of Czochralski-grown single crystals of Bi2Te3-Sb2Te3 alloys containing 0, 10, 25, 40, 50, 60, 65, 70, 80, 90, 99.5, or 100 mol % Sb2Te3 has been investigated. The magnetic susceptibility of these crystals was determined at the temperature T = 291 K and the magnetic field H oriented parallel (χ) and perpendicularly (χ) to the trigonal crystallographic axis C 3. A complicated concentration dependence of the anisotropy of magnetic susceptibility χ has been revealed. The crystals with the free carrier concentration p ≈ 5 × 1019 cm?3 do not exhibit anisotropy of magnetic susceptibility. The transition to the isotropic magnetic state occurs for the compositions characterized by a significantly increased (from 200 to 300 meV) optical bandgap.  相似文献   

19.
The SiC metal-semiconductor field-effect transistors (MESFETs) have been reported to have current instability and strong dispersion caused by trapping phenomena at the surface and in the substrate, which degrade direct-current (DC) and radio-frequency (RF) performance. This paper illustrates the change in electrical characteristics of SiC MESFETs after Si3N4 passivation. Because of a reduction of surface trapping effects, Si3N4 passivation can diminish current collapse under pulsed DC conditions, increasing the RF power performance. The reduction of surface trapping effects is verified by the change in the ratio of the drain current to the gate current under pinch-off conditions.  相似文献   

20.
The magnetic and magnetotransport properties of multilayer Co0.45 Fe0.45Zr0.1/(a-Si) nanostructures with a 0.7-to 3.5-nm-thick amorphous silicon layer and a 2.5-to 3.5-nm-thick metal layer that are produced via ion-beam sputtering are investigated. It is demonstrated that the resistance of these structures depends on temperature as R xx ∝-log T, which is typical of metal/dielectric nanocomposites on the metal side of the percolation transition. A negative magnetoresistance (~0.15%) is observed at a thickness of the amorphous silicon layers of no greater than 1 nm. This effect is related to spin-dependent electron transitions between the neighboring layers in the presence of the antiferromagnetic exchange interaction between them. Under the same conditions, a transverse (between the Hall probes) magnetoresistive effect amounts to 6–9%. This phenomenon is related to the anisotropic magnetoresistance and the planar Hall effect, which has not been observed in metal/dielectric nanocomposites in the vicinity of the percolation transition. It is demonstrated that a magnetic memory cell based on such a film structure with the induced magnetic anisotropy can be created.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号