首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
This study investigates the thermal fatigue cracking behavior of high-silicon spheroidal graphite (SG) cast iron. Irons with different residual magnesium contents ranging from 0.038 to 0.066 wt pct are obtained by controlling the amount of spheroidizer. The repeated heating/cooling test is performed under cyclic heating in various temperatures ranging from 650 °C to 800 °C. Experimental results indicate that the thermal fatigue cracking resistance of high-silicon SG cast iron decreases with increasing residual magnesium content. The shortest period for crack initiation and the largest crack propagation rate of the specimens containing 0.054 and 0.060 wt pct residual magnesium contents are associated with heating temperatures of 700 °C and 750 °C. Heating temperatures outside this range can enhance the resistance to thermal fatigue crack initiation and propagation. When thermal fatigue cracking occurs, the cracks always initiate at the surface of the specimen. The major path of crack propagation is generally along the eutectic cell-wall region among the ferrite grain boundaries, which is the location of MgO inclusions agglomerating together. On the other hand, dynamic recrystallization of ferrite grains occurs when the thermal cycle exceeds a certain number after testing at 800 °C. Besides, dynamic recrystallization of the ferrite matrix suppresses the initiation and propagation of thermal fatigue cracking.  相似文献   

2.
The low-cycle fatigue (LCF) behavior of a wrought cobalt-base superalloy, Haynes 188, has been investigated over a range of temperatures between 25 °C and 1000 °C employing a triangular waveform and a constant strain amplitude of ±0.4 pct. Correlations between macroscopic cyclic deformation and fatigue life with the various microstructural phenomena were enabled through scanning electron microscopy (SEM) and transmission electron microscopy (TEM), detailing the crack initiation and propagation modes, deformation substructure, and carbide precipitation. Cyclic stress response varied as a complex function of temperature. Dynamic strain aging (DSA) was found to occur over a wide temperature range between 300 °C and 750 °C. In the DSA domain, the alloy exhibited marked cyclic hardening with a pronounced maximum at 650 °C. Dynamic strain aging has been documented through the occurrence of serrated yielding, inverse temperature dependence of maximum cyclic stress, and cyclic inelastic strain developed at half of the fatigue life. Additionally, the alloy also displayed a negative strain rate sensitivity of cyclic stress in the DSA regime. These macroscopic features in the DSA domain were accompanied by the substructure comprised of coplanar distribution of dislocations associated with the formation of pileups, stacking faults, and very high dislocation density. Toward the end of the DSA domain, dislocation pinning by M23C6 precipitates occurred predominantly. The deformation behavior below and above the DSA domain has also been investigated in detail. The temperature dependence of LCF life showed a maximum at ≈300 °C. The drastic reduction in life between 300 °C and 850 °C has been ascribed primarily to the deleterious effects of DSA on crack initiation and propagation, while the lower life at temperatures less than 200 °C has been attributed to the combined influence of low ductility and larger cyclic response stress.  相似文献   

3.
The continuous cycling and hold time low cycle fatigue properties of the Ni base superalloy René 95 were studied at 649°C using powder products (−60 mesh) in the as-HIP and HIP + forged conditions. It was shown that cracks were initiated by pores, by ceramic particles and by a classical stage I mechanism for both materials and for both cycle characters. For the continuously cycled as-HIP material, deformation was restricted to well defined bands at low strains and became homogeneous as the strain level increased. The total energy to fracture increased abruptly in the low strain regime and this was also reflected by a break in the Coffin-Manson plot. In all cases cracks initiated at pores. The hold time specimens exhibited an extremely high dislocation density and surface connected initiation yet without a significant life reduction. The observations were essentially similar for the HIP + forged material except that deformation tended to be confined to well defined slip bands even at high strains and to some extent even for the hold time tests. This behavior was attributed to the fact that theγ′ were smaller, more coherent and more readily sheared by dislocations which were strongly paired. There was a marked tendency for crack propagation to change from transgranular to intergranular (also observed for the as-HIP material) at a unique combination of crack length and plastic strain. The transition occurred at shorter crack lengths for the HIP + forged material except when crack initiation was subsurface. In this case the transition was delayed and the life was greatly enhanced, indicating that the environment plays a major role in determining the fatigue life. PHILIPPE TAUPIN formerly Research Associate, Department of Materials Science, University of Cincinnati.  相似文献   

4.
《Acta Metallurgica》1987,35(9):2255-2264
The high cycle fatigue life of aged Nitac 14B at 825°C in vacuum is strongly dependent upon frequency and, at high frequencies, surface finish. Crack initiation controls fatigue life at all frequencies, although the mechanism changes with frequency. Fiber cracking is especially prominent at low frequencies, as is dislocation penetration of γ′ rosettes. The results are consistent with a creep-fatigue interaction at low frequencies, such that cracks are initiated at the interior, and with surface-dominated crack initiation at high frequency. It is shown that fatigue lives at very low frequencies are consistent with creep-rupture data for Nitac 14B. Theoretical analysis of the cyclic deformation behaviour shows that decrease of frequency causes internal matrix stresses to relax and to increase stresses in the renforcing phase. This situation corresponds to transition from fatigue to creep loading conditions.  相似文献   

5.
The isothermal fatigue behavior of a high-activity aluminide-coated single-crystal superalloy was studied in air at test temperatures of 600 °, 800 °, and 1000 °. Tests were performed using cylindrical specimens under strain control at ≈0.25 Hz; total strain ranges from 0.5 to 1.6 pct were investigated. At 600 °, crack initiation occurred at brittle coating cracks, which led to a significant reduction in fatigue life compared to the uncoated alloy. Fatigue cracks grew from the brittle coating cracks initially in a stage II manner with a subsequent transition to crystallographic stage I fatigue. At 800 ° and 1000 °, the coating failed quickly by a fatigue process due to the drastic reduction in strength above 750 °, the ductile-brittle transition temperature. These cracks were arrested or slowed by oxidation at the coating-substrate interface and only led to a detriment in life relative to the uncoated material for total strain ranges of 1.2 pct and above 800 °. The presence of the coating was beneficial at 800 ° for total strain ranges less than 1.2 pct. No effect of the coating was observed at 1000 °. Crack growth in the substrate at 800 ° was similar to 600 °; at 1000 °, greater plasticity and oxidation were observed and cracks grew exclusively in a stage II manner. Formerly Research Student, Department of Materials Science and Metallurgy, University of Cambridge. Formerly Lecturer, Department of Materials Science and Metallurgy, University of Cambridge CB2 3QZ, United Kingdom.  相似文献   

6.
Hot Deformation Behavior of Beta Titanium Ti-13V-11Cr-3Al Alloy   总被引:1,自引:0,他引:1  
Hot compression tests were conducted on Ti-13V-11Cr-3Al beta-Ti alloy in the temperature range of 1203 K to 1353 K (930 °C to 1080 °C) and at strain rates between 0.001 and 1 s?1 The stress–strain curves showed pronounced yield point phenomena at high strain rates and low temperatures. The yield point elongation and flow stresses at the upper and lower yield points were related to the Zener–Hollomon parameter. It was found that dynamic recovery at low strain rates and dynamic recrystallization at high strain rates were the controlling mechanisms of microstructural evolution. The results also showed that strain rate had a stronger influence on the hot deformation behavior than temperature. The microstructural observations and constitutive analysis of flow stress data supported the change in the hot deformation behavior of the studied alloy varies with strain rate. For various applied strain rates, the activation energy for hot deformation was calculated in range of 199.5 to 361.7 kJ/mol. At low strain rates (0.001 and 0.01 s?1), the value of activation energy was very close to the activation energy for the diffusion of V, Cr, and Al in beta titanium. The higher value of activation energy for deformation at high strain rates (0.1 and 1 s?1) was attributed to the accumulation of dislocations and the tendency to initiate dynamic recrystallization.  相似文献   

7.
In the present study, the S–N fatigue and the fatigue crack propagation (FCP) behaviors of American Petroleum Institute X80 steel were examined in the different locations of the base metal (BM), weld metal (WM), and heat-affected zone (HAZ) at 298 K, 223 K, and 193 K (25 °C, ?50 °C, and ?80 °C). The resistance to S–N fatigue of X80 BM specimen increased greatly with decreasing temperature from 298 K to 193 K (25 °C to ?80 °C) and showed a strong dependency on the flow strength (½(yield strength + tensile strength)). The FCP rates of X80 BM specimen were substantially reduced with decreasing temperature from 298 K to 223 K (25 °C to ?50 °C) over the entire ?K regime, while further reduction in FCP rates was not significant with temperature from 223 K to 193 K (?50 °C to ?80 °C). The FCP rates of the X80 BM and the WM specimens were comparable with each other, while the HAZ specimen showed slightly better FCP resistance than the BM and the WM specimens over the entire ?K regime at 298 K (25 °C). Despite the varying microstructural characteristics of each weld location, the residual stress appeared to be a controlling factor to determine the FCP behavior. The FCP behaviors of high strength X80 steel were discussed based on the microstructural and the fractographic observations.  相似文献   

8.
Low cycle fatigue of René 80 was studied at 871 and 982 °C. It was found that when the data were represented on the basis of plastic strain, the life increased with decreasing frequency and imposition of a 90 s hold at maximum strain. Transmission electron microscopy studies showed that the ′ coarsened and an interfacial array of edge dislocations developed. The density of dislocations in the matrix was very low. Light optical microscopy revealed that cracks generally inititiated at oxide spikes in surface connected grain boundaries. A crack initiation criterion based on the maximum stress and oxide depth at the time of crack initiation was found to represent the data very well. Based on that representation, an expression for the initiation fatigue life was developed. That expression includes temperature, frequency and cyclic stress strain parameters as variables. S. Liu, formerly Research Associate at the University of Cincinnati.  相似文献   

9.
《Acta Metallurgica》1989,37(4):1089-1097
The effects of crystallographic orientation on fatigue crack initiation has been examined for coarse-grained Astroloy at 20°C. Specimens were cycled by three-point bending at stress ranges between 5 and 95% of the proportional limit until fatigue cracks were detected. The crystallographic orientation of individual grains within which fatigue cracks initiated was determined by use of selected area electron channeling. Grains forming cracks were found to have surface normals near the 〈100〉, 〈011〉, and 〈113〉 directions. Conversely, grains which did not initiate cracks were not similarly grouped in orientation. Calculations of the Taylor factor using the Bishop-Hill approach revealed that fatigue crack initiation in Astroloy occurred at grains with low values of the Taylor factor.  相似文献   

10.
High-cycle fatigue (HCF), involving the premature initiation and/or rapid propagation of cracks to failure due to high-frequency cyclic loading, remains a principal cause of failures in gas-turbine propulsion systems. In this work, we explore the feasibility of using “grain-boundary engineering” as a means to enhance the microstructural resistance to HCF. Specifically, sequential thermomechanical processing, involving alternate cycles of strain and annealing, was used to increase the fraction of “special” grain boundaries and to break up the interconnected network of “random” boundaries, in a commercial polycrystalline Ni-based superalloy (ME3). The effect of such grain-boundary engineering on the fatigue-crack-propagation behavior of large (∼8 to 20 mm), through-thickness cracks at 25 °C, 700 °C, and 800 °C was examined. Although there was little influence of an increased special boundary fraction at ambient temperatures, the resistance to near-threshold crack growth was definitively improved at elevated temperatures, with fatigue threshold stress intensities some 10 to 20 pct higher than at 25 °C, concomitant with a lower proportion (∼20 pct) of intergranular cracking.  相似文献   

11.
Effects of inclusions on 538 °C (1000 °F) strain control low cycle fatigue life of hot isostatically pressed and heat treated powder metal René* 95 compacts were evaluated. Size and location (surface or internal for the test bar) effects along with inclusion types and sources are categorized. Five types of inclusions were identified based on fracture initiation site appearance, although only two major types commonly contribute to significant life low cycle fatigue life degradation. Prior particle boundary decoration reactive type inclusions typically cause the most severe low cycle fatigue life degradation, and those are followed by the discrete ceramic type inclusions. Known potential contaminant seeding study evaluations were used to confirm sources for specific inclusion types. Attempts to minimize the sources for introduction of these contaminants in the argon gas atomization process facilities were only partially successful. An advanced processing approach for the manufacture of René 95 to achieve superior low cycle fatigue life has been proposed based on the improved understanding of the inclusion problem. This paper is based on a presentation made at the symposium “Physical Metallurgy of High Temperature Alloys” held at the fall meeting of the TMS-AIME in Philadelphia, PA on October 3 and 4, 1983, under the TMS-AIME High Temperature Alloys Committee.  相似文献   

12.
The oxidation behavior of 0.2 Y-alloyed Mo-9Si-8B (at. pct) was investigated in a wide temperature range from 923 K to 1673 K (650 °C to 1400 °C). Formation of a thin yttrium-silicate scale at the outer layer along with the thick silica-rich inner layer containing Y-rich oxide inclusions was detected beyond 1573 K (1300 °C). A substantial improvement in the oxidation resistance of the alloy could be realized at 1073 K to 1273 K (800 °C to 1000 °C) with the addition of yttrium. The formation of a viscous silica-rich protective scale could prevent the permeation of MoO3 at the initial stages of oxidation at this temperature regime. The growth of the internal oxidation zone followed a parabolic rate at 1273 K to 1673 K (1000 °C to 1400 °C), and the activation energy values calculated for both the outer oxide scale and internal oxidation zone formation indicated the inward diffusion of oxygen as the dominant rate controlling mechanism. The microstructural and kinetic data obtained for internal and external oxidation indicate that yttrium-silicate scale reduces the inward diffusion of oxygen, thereby improving the oxidation resistance of the alloy at high temperatures in any oxidizing environment.  相似文献   

13.
The mechanism of oxidation-assisted growth of surface cracks during fatigue with compressive holds has been studied experimentally and via a model that describes the role of oxide and substrate properties. The creep-based finite element model has been employed to examine the role of material parameters in the damage evolution in a Ni-base single-crystal superalloy René N5. Low-cycle fatigue experiments with compressive holds were conducted at 1255 K and 1366 K (982 °C and 1093 °C). Interrupted and failed specimens were characterized for crack depth and spacing, oxide thickness, and microstructural evolution. Comparison of experimental to modeled hysteresis loops indicates that transient creep drives the macroscopic stress–strain response. Crack penetration rates are strongly influenced by growth stresses in the oxide, structural evolution in the substrate, and the development of \(\gamma ^{\prime }\) denuded zones. Implications for design of alloys resistant to this mode of degradation are discussed.  相似文献   

14.
The effects of various microconstituents on crack initiation and propagation in high-cycle fatigue (HCF) were investigated in an aluminum casting alloy (A356.2). Fatigue cracking was induced in both axial and bending loading conditions at strain/stress ratios of −1, 0.1, and 0.2. The secondary dendrite arm spacing (SDAS) and porosity (maximum size and density distribution) were quantified in the directionally solidified casting alloy. Using scanning electron microscopy, we observed that cracks initiate at near-surface porosity, at oxides, and within the eutectic microconstituents, depending on the SDAS. When the SDAS is greater than ∼ 25 to 28 μm, the fatigue cracks initiate from surface and subsurface porosity. When the SDAS is less than ∼ 25 to 28 μm, the fatigue cracks initiate from the interdendritic eutectic constituents, where the silicon particles are segregated. Fatigue cracks initiated at oxide inclusions whenever they were near the surface, regardless of the SDAS. The fatigue life of a specimen whose crack initiated at a large eutectic constituent was about equal to that when the crack initiated at a pore or oxide of comparable size.  相似文献   

15.
The low-cycle fatigue (LCF) behavior of a gamma titanium aluminide alloy Ti-46Al-2Nb-2Cr in fully lamellar (FL) and nearly lamellar (NL) microstructural conditions is studied at 650 °C and 800 °C, with and without hold times. At 650 °C and 800 °C, the alloy in either condition exhibits cyclic stability at all strain levels studied, excepting the NL structure which shows slight cyclic hardening at higher strain levels at 650 °C. Fracture in the FL condition occurs by a mixed mode comprising delamination, translamellar fracture, and stepwise fracture. On the other hand, fracture occurs mostly by translamellar mode in the NL condition. At both test temperatures, the alloy in the FL condition obeys the well-known Manson-Coffin behavior. The fatigue resistance of the alloy at 650 °C in the FL condition is very much comparable to, while in the NL condition it is superior to, that of Ti-24Al-llNb alloy. At 650 °C, a 100-second peak tensile strain hold doubles the fatigue life of the alloy in the FL condition, while a 100-second hold at compressive peak strain or at both tensile and compressive peak strain degrades fatigue life. The observed hold time effects can primarily be attributed to mean stress. Irrespective of the nature of the test, the hysteretic energy (total as well as tensile) per cycle remains nearly constant during the majority of its life. The total and tensile hysteretic energy to fracture, at both test temperatures, increase with cycles to failure, and the variation follows a power-law relationship. Formerly NRC Senior Resident Associate, Wright Laboratory.  相似文献   

16.
17.
Recent developments in the area of water cooled gas turbine design have created a need for low cycle fatigue test data for alloy 718 in the temperature range of 204 to 649 °C. To support this need, data were generated in the room temperature to 649 °C range. As noted by previous investigators, there was a crossover in fatigue lives at low strain depending on temperature. At high strain ranges the lowest fatigue life was exhibited at the higher temperatures. However, in the low strain, long life regime this trend reversed with the fatigue life at a given strain range exhibiting a peak at some intermediate temperature. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) studies were conducted on the fatigue specimens to determine the nature of the cyclic deformation process as a function of strain range and temperature, the principal mode of deformation was by mechanical twinning. However, at the two highest temperatures, the primary process for deformation was slip. The principal difference between the strain-life behavior of the specimens cycled at 538 and 649 °C, and those cycled at the three lower temperatures (204, 316, 427 °C) is interpreted in light of this change in deformation process with temperature.  相似文献   

18.
Very high cycle fatigue (VHCF) properties at high temperature of Ni-based single-crystal (SX) superalloys and of a directionally solidified (DS) superalloy have been investigated at 20 kHz and a temperature of 1000 °C. Under fully reversed conditions (R = ? 1), no noticeable difference in VHCF lifetimes between all investigated alloys has been observed. Internal casting pores size is the main VHCF lifetime-controlling factor whatever the chemical composition of the alloys. Other types of microstructural defects (eutectics, carbides), if present, may act as stress concentration sites when the number of cycles exceed 109 cycles or when porosity is absent by applying a prior hot isostatic pressing treatment. For longer tests (> 30 hours), oxidation also controls the main crack initiation sites leading to a mode I crack initiation from oxidized layer. Under such conditions, alloy’s resistance to oxidation has a prominent role in controlling the VHCF. When creep damage is present at high ratios (R ≥ 0.8), creep resistance of SX/DS alloys governs VHCF lifetime. Under such high mean stress conditions, SX alloys developed to retard the initiation and creep propagation of mode I micro-cracks from pores have better VHCF lifetimes.  相似文献   

19.
This article describes the microstructural and mechanical properties of 12YWT oxide-dispersion-strengthened (ODS)-ferritic steel nanocomposite. According to the annealing results obtained from X-ray diffraction line profile analysis on mechanically alloyed powders milled for 80 hours, the hot extrusion at 1123 K (850 °C) resulted in a nearly equiaxed ultrafine structure with an ultimate tensile strength of 1470 MPa, yield strength of 1390 MPa, and total elongation of 13 pct at room temperature comparable with high-strength 14YWT ODS steel. Maximum total elongation was found at 973 K (600 °C) where fractography of the tensile specimen showed a fully ductile dimple feature compared with the splitting cracks and very fine dimpled structure observed at room temperature. The presence of very small particles on the wall of dimples at 1073 K (800 °C) with nearly chemical composition of the matrix alloy was attributed to the activation of the boundaries decohesion mechanism as a result of diffusion of solute atoms. The results of Charpy impact test also indicated significant improvement of transition temperature with respect to predecessor 12YWT because of the decreased grain size and more homogeneity of grain size distribution. Hence, this alloy represented a good compromise between the strength and Charpy impact properties.  相似文献   

20.
High temperature-high strain rate fracture of inconel 600   总被引:2,自引:0,他引:2  
The hot fracture of Inconel 600 has been studied over the temperature range from 800° to 2000°F using a hot torsion tester that is capable of superimposing either axial tensile or compressive stresses on the torsional shearing stresses. Microscopic studies of fracture initiation have been made over the entire temperature region. From 800° to 1200°F fracture initiates at inclusions and propagates by transgranular shear. In the temperature region of minimum ductility, 1300° to 1500°F, fracture initiates at grain boundaries and propagates readily in an intergranular manner. At 1600°F and above, fracture initiates easily at grain boundaries, but because recrys-tallization intervenes crack propagation is difficult and strain to fracture is high. Microcracks initiate at the peak in the torque-twist curve. The higher the temperature the smaller is the strain at which fracture initiates. Correlations have been found between the stress state and the shearing strain at crack initiation and total fracture strain. These correlations show the strong influence of a compressive normal stress on retarding crack initiation and resisting crack propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号