首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dies and tools used in hot metal forming are exposed to elevated temperatures and high contact pressures, and therefore to wear and fatigue. Fracture toughness is thus one of the main material properties used when selecting and optimizing heat treatment of tools. However, fracture toughness data alone is not sufficient and need to be supported by other material properties and features. The aim of the present research work was to correlate fracture toughness properties of hot-work tool steel, especially its variation to the local microstructure, microhardness, and composition and to establish methodology for proper evaluation of tool steel’s fracture toughness. Research was performed on H11-type hot-work tool steel specimens, heat treated under the same conditions but displaying greatly different fracture toughness. Results show that the presence of any weak point, either in a form of non-metallic inclusions and/or large undissolved eutectic carbide clusters, located in the region of positive segregation with high microhardness will lead to considerable reduction in fracture toughness.  相似文献   

2.
The aim of these investigations was first of all to evaluate the fracture toughness (Klc) changes of the hot-work tool steels depending on the non-metallic inclusions (NMI) volume fraction (melting technology). The tests were carried out on two types of the hot-work tool steels, i. e. H13 and H11 according to AISI. As a result of these investigations, supplemented by the detailed fractographic analysis, it has been revealed that uniform arrangement of NMI in the structure can be considered as harmless for the fracture toughness of tool steels. At high steel hardness values, the NMI, because of their action with a very small plastic strain zone, can be treated as natural obstacles in the crack propagation. At low hardness values of tool steels, achieved as a result of tempering at high temperatures, the role of NMI in the process of crack formation of these steels is limited by carbides precipitated from martensite. The micro-voids are formed round these carbides, which, connecting earlier than the voids formed round NMI, set the path of cracking and determine the steel fracture toughness.  相似文献   

3.
Charpy V‐notch (CVN) impact‐test values are widely used in toughness specifications for AISI H11 hot‐work tool steel, even though the fracturing energy is not directly related to the tool design. KIc, the plain‐strain stress‐intensity factor at the onset of unstable crack growth, can be related to the tool design; however, KIc test values are not widely used in toughness specifications. This is surprising since to the designer KIc values are more useful than CVN values because the design calculations for tools and dies of high‐strength steels should take into account the strength and the toughness of materials in order to prevent the possibility of rapid and brittle fracture. An investigation was conducted to determine whether standardized fracture‐toughness testing (ASTM E399‐90), which is difficult to perform reliably for hard materials with a low ductility, could be replaced with a so far non‐standard testing method. A particular problem is that the manufacture of the fatigue crack samples is difficult and expensive, and this has promoted the search for alternative fracture‐toughness testing methods. One of the most promising methods is the use of circumferentially notched and fatigue‐precracked tensile specimens. With this technique the fatigue crack in the specimen is obtained without affecting the fracture toughness of the steel, if it is obtained in soft annealed steel, i.e., prior to the final heat treatment. The results of this investigation have shown that using the proposed method it was possible to draw, for the normally used range of working hardness, combined tempering diagrams (Rockwell‐C hardness ‐ Fracture toughness KIc ‐ Tempering temperature) for some AISI H11 hot‐work tool steel delivered from three steel plants. On the basis of the combined tempering charts the influence of the processing route on the mechanical properties was investigated. In the same way, vacuum‐heat‐treated tool steels were assessed and their properties expressed as a ratio of the fracture toughness to the hardness (KIc/HRc).  相似文献   

4.
RE-Nb对铸造3Cr2MoNiWV热锻模具钢组织和力学性能的影响   总被引:3,自引:0,他引:3  
用扫描电镜、透射电镜和万能电子材料拉伸试验机研究了RE-Nb对铸造3Cr2MoNiWV热锻模具钢组织和力学性能的影响.结果表明:RE-Nb能细化组织,增加位错马氏体的比例,改善回火碳化物和夹杂物的形态、数量及分布.与常规的铸造3Cr2MoNiWV热锻模具钢相比,冲击韧性提高1.9倍,达到了72.3 J/cm2,常温抗拉强度和高温抗拉强度(600 ℃)分别提高了212 MPa和206 MPa,达到1 446 MPa和1 041 MPa,而硬度变化不大.  相似文献   

5.
研究了回火温度对高碳钢断裂韧性及其他力学性能的影响。利用紧凑拉伸试样测量其平面应变断裂韧度,扫描电镜(SEM)观察回火后的组织演变规律及断裂韧度试样断口形貌。结果表明:随着回火温度的升高,马氏体逐渐分解消失,从过饱和α固溶体中析出的碳化物数量逐渐增多并发生聚集长大,强度和硬度下降,塑性、断裂韧性和冲击韧性上升。位错强化和固溶强化作用减弱是试验钢强度降低、韧性升高的主要原因。  相似文献   

6.
The influence of microstructural variations on the fracture toughness of two tool steels with compositions 6 pct W-5 pct Mo-4 pct Cr-2 pct V-0.8 pct C (AISI M2 high-speed steel) and 2 pct W-2.75 pct Mo-4.5 pct Cr-1 pct V-0.5 pct C (VASCO-MA) was investigated. In the as-hardened condition, the M2 steel has a higher fracture toughness than the MA steel, although the latter steel is softer. In the tempered condition, MA is softer and has a higher fracture toughness than M2. When the hardening temperature is below 1095 °C (2000 °F), tempering of both steels causes embrittlement,i.e., a reduction of fracture toughness as well as hardness. The fracture toughness of both steels was enhanced by increasing the grain size. The steel samples with intercept grain size of 5 (average grain diameter of 30 microns) or coarser exhibit 2 to 3 MPa√m (2 to 3 ksi√in.) higher fracture toughness than samples with intercept grain size of 10 (average grain diameter of 15 microns) or finer. Tempering temperature has no effect on the fracture toughness of M2 and MA steels as long as the final tempered hardness of the steels is constant. Retained austenite has no influence on the fracture toughness of as-hardened MA steel, but a high content of retained austenite appears to raise the fracture toughness of as-hardened M2 steel. There is a temperature of austenitization for each tool steel at which the retained austenite content in the as-quenched samples is a maximum. The above described results were explained through changes in the microstructure and the fracture modes. CHONGMIN KIM, formerly with Climax Molybdenum Company of Michigan, Ann Arbor, MI.  相似文献   

7.
详细研究了奥氏体化温度对中碳调质钢40CrNiMo的淬透性、以0.7℃/s淬火后组织及调质处理后组织和性能的影响.研究结果显示,随着奥氏体化温度从800提高至1000℃,材料的淬透性逐渐增加,尤其是当奥氏体化温度提高至950℃以后,淬透性增加幅度显著变大.当奥氏体化温度为800℃时,组织中存在相对多的铁素体,使得淬火后...  相似文献   

8.
 采用降低铁素体相韧性、提高铁素体相硬度及适当脆化原奥氏体晶界的方法,开发出一种新型胀断连杆用铁素体-珠光体型中碳非调质钢,从钢种设计、微观组织、力学性能及胀断特征等方面对此钢种进行了介绍。硅和磷元素的铁素体固溶强化作用及钒元素析出强化和组织细化作用,使得开发钢不仅具有较高的强度水平和屈强比,同时具有远高于传统的胀断连杆用高碳钢C70S6的优异高周疲劳性能。此外,模拟胀断试验结果表明,开发钢的断口呈典型脆性解理断裂,胀断前后的变形量很小,具有优于C70S6钢的胀断性能,可采用胀断工艺制造连杆。  相似文献   

9.
采用粉末冶金方法制备添加B_4C的全致密ASP30高速钢,样品在1 040℃到1 200℃范围内淬火,并且经过560℃三次回火,研究淬火温度对其力学性能及显微组织的影响。采用扫描电子显微镜、洛氏硬度计和材料力学性能测试机研究高速钢的组织和力学性能。结果表明:添加质量分数为0.025%B_4C的ASP30粉末冶金高速钢在1 160℃下烧结2 h后会形成月牙形液相碳化物,从而获得全致密的烧结组织。随淬火温度升高,显微组织中碳化物的数量明显减少,基体中合金元素固溶含量提高,基体晶粒长大,断口形貌呈准解理断裂但断口平整度下降。随淬火温度升高,钢的硬度提高,最高值达到69 HRC。抗弯强度、断裂韧性均下降,抗弯强度最高值达4 357MPa,断裂韧性最高值为48.6 MPa/m1/2。冲击韧性先升高后下降,在1 080℃最高为18.85 J/cm2。  相似文献   

10.
The aim of this study was to examine the effect of grain size, regulated by means of austenitizing temperature, on the process of hot-work tool steel cracking. Fracture toughness (Klc) of this steel depended on the ratio of the average linear intercept of grain (L?) and the diameter of the plastic strain zone formed ahead of the propagating crack (dy). Investigations were supplemented by the fractographic analysis. The dependence of the Klc one the ratio L?:dy has been confirmed. In the subcritical range, when L?:dy<1, the grain growth causes rapid decrease of fracture toughness. In an overcritical range, when L?:dy>1, grain growth resulting from the increase of austenitizing temperature causes stoppage of the decrease of fracture toughness and can even lead to increase. Thus, tools requiring the highest hardness can be quenched from possibly high temperatures without fear of any disadvantageous influence upon the toughness of even a strong grain growth. In the critical range, when L?:dy≈1, fracture toughness of tool steel reached minimum.  相似文献   

11.
High-pressure torsion (HPT) has been used for investigating the influence of predeformation on the fracture toughness of a fully pearlitic rail steel. The use of HPT enables one to investigate changes in fracture toughness as a function of predeformation over a wide range of strain while simultaneously studying the influence of the crack plane orientation on the fracture toughness. With increasing prestrain, besides a strong increase in hardness, a pronounced anisotropy in the fracture toughness was found. Both the increase in hardness and the anisotropic fracture behavior can be attributed to the shear deformation process leading to an anisotropic composite structure on the nanometer scale.  相似文献   

12.
Mechanical properties of WC–24 mass% Ni alloy prepared by a combination in single stage of metal phase synthesis and compaction of an ultrafine mixture of WC–Ni powders by high-energy compaction and sintering are studied. Tungsten carbide, nickel oxide, and carbon are selected as the starting powders. After milling the initial powders the average particle size is 200-300 nm. Previously compacted briquettes of WC + NiO + C are heated, sintered, and pressed in the range 950-1300°C at vacuum of 0.133 Pa. Briquettes are also sintered in the liquid phase at 1350°C for comparison. Ultimate strength in bending, fracture toughness, ultimate strength in compression, and Vickers hardness are determined for specimens prepared at different temperatures. The dependence of mechanical properties on specimen consolidation temperature is studied. It is shown that these dependences for pressed specimens have a maximum at 1200-1250°C. The high level of properties (ultimate strength in bending 2500 MPa, ultimate strength in compression 3100 MPa, fracture toughness 19 MPa·m1/2, and hardness 10.0 GPa) are achieved for a WC + Ni + C powder mixture to which carbon is added in the form of a liquid carbon-containing compound. Introduction into the mixture of commercial carbon grade P803 leads to low specimen mechanical properties. The effect on mechanical properties of porosity and pore size, and also grain boundary quality between particles is studied.  相似文献   

13.
摘要:采用Ca、Mg处理工艺研究不同夹杂物粒子对200kJ/cm大线能量焊接低合金高强度钢CGHAZ冲击韧性的影响,对各个试样CGHAZ的显微组织,晶粒尺寸和冲击功进行观察和分析。试验结果表明,在低合金高强度钢CGHAZ中,Mg处理钢的冲击性能明显高于Ca处理钢,主要原因是含Mg夹杂物粒子析出能力比含Ca夹杂物粒子强,在焊接过程中,含Mg夹杂物粒子对CGHAZ组织的钉扎作用更加显著;同时提高针状铁素体的含量,延长裂纹扩展路径,提高断裂时吸收的能量,使样品韧性得到提升。  相似文献   

14.
为了开发同时具有超高强度和良好韧性的低合金超高强度钢板,采用30MnCrNiMo连铸坯和33MnCrNi3Mo钢锭,经过真空复合焊接,高温轧制,淬火+低温回火热处理工艺研制出15 mm CrNiMo-CrNi3MoCrNiMo三层复合超高强度钢板;利用探伤、拉伸、冷弯、冲击、硬度等试验检验其结合度和力学性能;利用光学显微镜、扫描电镜等分析三层复合超高强度钢的组织和冲击断口形貌。结果表明,采用该工艺生产的三层复合超高强度钢板结合性良好,能够满足GB/T 7734-2015 Ⅰ级探伤要求;复合钢板的综合力学性能良好,结合面处硬度值存在明显的过渡区域;结合面组织和基体组织均为回火马氏体组织  相似文献   

15.
The change rule of mechanical properties and impact fracture morphologies of a high Co- Ni secondary hardening ultra- high strength 25Co15Ni11Cr2MoE steel tempered at 200-750?? after quenched was studied by mechanical properties test and microstructure analysis such as optical microscope(OM) and scanning electron microscope(SEM). The results show that experimental steel after quenching and tempering has a remarkable secondary hardening effect. After tempered at 400-495??, the hardness of experimental steel can reach and beyond the quenched hardness. In this range, tensile strength, yield strength and hardness of experimental steel increase with the tempering temperature increasing, tensile strength and hardness of experimental reach maximum (57. 3HRC and 2160MPa) after tempered at 470??, meanwhile, with the tempering temperature increasing, impact toughness of experimental steel decreases during the prophase, until reaches minimum at 430??, then increases gradually, and reaches maximum after tempered at 510??. The recommended optimum heat treatment process of 25Co15Ni11Cr2MoE steel is as follow: 950???1h oil quenching??(-73??)??1h rising back to room temperature in the air ??495???5h air cooling. At this time, the experimental steel has the best strength and toughness matching.  相似文献   

16.
The effect of quenching temperatures on microstructure and fracture toughness of high carbon steel was investigated. Plane strain fracture toughness was tested with compact tension specimen. Microstructure and fracture morphology of KIC samples after quenching and tempering treatment were examined by scanning electron microscope (SEM).The results show that the residual carbides of steel in hardened state decreasea with the quenching temperature increasing and totally disappear after quenched at 920??;the grain size grows up obviously when the quenching temperature is more than 960??. The microstructure in high temperature tempered state is composed of residual carbides, precipitated carbides and ferrite matrix;plasticity decreases monotonically; the fracture toughness gradually decreases in the range from 800?? to 960??,and then almost invariant; the fracture type of KIC specimens is gradually changed from cleavage fracture to intergranular fracture. The main reason for the changes of fracture toughness has close relationship with the plasticity.  相似文献   

17.
The fracture toughness of a high speed steel (M3-2PM) and a tool steel (AISI 01) was assessed by the application of LEFM in a nonconventional manner. The point of fracture initiation in bend test specimens was identified in a scanning electron microscope and the shape of the inclusion sites found was approximated by ellipses to allow a critical stress intensity factor to be calculated. In this way an assessment of the fracture initiating inclusion size as well as the matrix toughness was attained. The toughness results obtained for the M3-2PM steel were on average 18.0 MNJm3/2 and for the AISI 01 steel 13.5 MNJm3/2 both of which somewhat deviate from previously reported values in the hardness range 65 and 61 HRC respectively. The deviation falls within 30 pct in both cases.  相似文献   

18.
 研究了一种2 000 MPa级中碳高强度弹簧钢的疲劳破坏行为。升降法得出实验钢的旋转弯曲疲劳极限σ-1为810 MPa,此值明显高于传统弹簧钢;这主要得益于实验钢具有良好的强度和塑韧性配合及均匀细小的奥氏体晶粒。用SEM对疲劳断口的分析表明,实验钢的疲劳破坏均起源于试样表层的非金属夹杂物,其主要成分为含Ti和V的碳氮化物,平均尺寸为(50±10)μm,且呈“鱼眼”断裂。相对于试样心部的夹杂物,表层夹杂物对实验钢的疲劳性能的危害性更大。  相似文献   

19.
系统研究了添加纳米级Al2O3的含量对Ti(C,N)基金属陶瓷力学性能和显微结构的影响。结果表明:纳米Al2O3的添加可大幅提高Ti(C,N)基金属陶瓷的力学性能,特别是硬度和断裂韧性明显提高,克服了Ti(C,N)基金属陶瓷硬度较低的缺点,扩大了其应用范围。通过对微观结构观察和分析,可以看出,纳米Al2O3的添加细化了基体的晶粒,主要断裂模式为穿晶断裂,晶粒的细化和断裂模式的改变是材料力学性能提高的主要原因。  相似文献   

20.
In this paper,the development and production of Ti-Cr-B microalloyed NM400 wear-resistant steel were discussed,along with the influence of heat treatment process parameters on the mechanical properties.The continuous cooling transformation behavior of steel was investigated by means of thermal simulator.Effects of austenitizing temperature on microstructures and properties of steel were studied.Martensite laths evolution,carbide transformation and precipitation behavior were observed by TEM.The wear-resistance of steel was compared with other similar steels.The results show that the steel has high strength and hardness,great low-temperature toughness and wear-resistance.The tensile strength is more than 1300 MPa,and the hardness is in the range of 390-430 HB.Due to the good hardenability,the steel has a uniform hardness distribution on the surface and thickness direction.The plate shape,cold bending property and weldability of the product can meet the user’s requirement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号