首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antimicrobial effects of whey protein isolate (WPI) films and coatings incorporating the lactoperoxidase system (LPOS) against Listeria monocytogenes were studied by turbidity, plate counting, disc‐covering, and disc‐surface‐spreading tests using various growth media. Survival of L. monocytogenes applied to smoked salmon before or after the coating was monitored immediately after application and during storage at 4 °C and 10 °C for up to 35 d. Tensile properties (elastic modulus [EM], tensile strength [TS], elongation [E]), oxygen permeability (OP), and color (Hunter L, a, b) of WPI films, with and without LPOS, were also compared. LPOS inhibited L. monocytogenes in broth and on agar media. WPI films incorporating 29 mg of LPOS per gram of film (dry basis) inhibited 4.2 log colony‐forming units (CFU)/cm2 of L. monocytogenes inoculated on agar media. WPI coatings prepared with LPOS at 0.7% (w/w) in a coating solution (40 mg LPOS/g coating [dry basis]) initially reduced >3 and 1 log CFU/g of L. monocytogenes and total aerobic microorganisms in smoked salmon, respectively. The WPI coatings incorporating LPOS prevented the growth of L. monocytogenes in smoked salmon at 4 °C and 10 °C for 35 d and 14 d, respectively. The tensile properties, oxygen permeability, and color of WPI films were not significantly changed by incorporation of LPOS (P >0.05).  相似文献   

2.
ABSTRACT: Effects of lactoferrin (LF), lactoferrin hydrolysate (LFH), and lactoperoxidase systems (LPOS), both directly and incorporated into edible whey protein isolate (WPI) films, on the inhibition of Penicillium commune were studied. Mechanical, oxygen-barrier, and color properties of WPI films with and without LPOS were also compared. Antimicrobial effects were examined by turbidity, disc diameter, surface spreading, and film surface inoculation tests. Film elastic modulus, tensile strength, percent elongation, oxygen permeability, and Hunter L, a , and b values were tested. LF and LFH at 10 mg/mL or higher inhibited P. commune in 1% peptone water but not in potato dextrose broth. WPI films incorporating LPOS inhibited growth of P. commune . The properties of WPI films were not significantly changed by incorporation of LPOS ( P > 0.05).  相似文献   

3.
The effects of whey protein isolate (WPI) coatings incorporating a lactoperoxidase system (LPOS) on the inhibition of Salmonella enterica and Escherichia coli O157:H7 on roasted turkey were studied by testing the initial inhibition as well as the inhibition during storage. The initial antimicrobial effects of WPI coatings incorporating LPOS (LPOS-WPI coatings) were examined with various inoculation levels and LPOS concentrations. LPOS-WPI coatings with 7 and 4% of LPOS demonstrated initial 3- and 2-log CFU/g reductions of S. enterica and E. coli O157:H7, respectively. The antimicrobial effect was observed regardless of whether the turkey was inoculated before or after coating. Storage studies were conducted for 42 days at 4 and 10 degrees C with S. enterica (6.0 log CFU/g)- or E. coli O157:H7 (5.6 log CFU/g)-inoculated sliced turkey. LPOS concentrations for the storage studies of S. enterica and E. coli O157:H7 were 5 and 3% (wt/wt), respectively, in the coating solution and in an LPOS solution for spreading. LPOS-WPI coatings inhibited the growth of both S. enterica and E. coli O157:H7 in turkey at both 4 and 10 degrees C for 42 days. The inhibition was more pronounced when the coating was formed on the surface of the turkey prior to inoculation than when the coating was formed on the inoculated surface. More effective inhibition of S. enterica and E. coli O157:H7 was observed with the LPOS-WPI coatings than with the LPOS solution-spreading treatment. LPOS-WPI coatings also retarded the growth of total aerobes during storage.  相似文献   

4.
ABSTRACT: The effectiveness of whey protein isolate (WPI) coatings incorporated with grape seed extract (GSE), nisin (N), malic acid (MA), and ethylenediamine tetraacetic acid (EDTA) and their combinations to inhibit the growth of Listeria monocytogenes, E. coli O157:H7, and Salmonella typhimurium were evaluated in a turkey frankfurter system through surface inoculation (approximately 106 CFU/g) of pathogens. The inoculated frankfurters were dipped into WPI film forming solutions both with and without the addition of antimicrobial agents (GSE, MA, or N and EDTA, or combinations). Samples were stored at 4 °C for 28 d. The L. monocytogenes population (5.5 log/g) decreased to 2.3 log/g after 28 d at 4 °C in the samples containing nisin (6000 IU/g) combined with GSE (0.5%) and MA (1.0%). The S. typhimurium population (6.0 log/g) was decreased to approximately 1 log cycles after 28 d at 4 °C in the samples coated with WPI containing a combination of N, MA, GSE, and EDTA. The E. coli O157:H7 population (6.15 log/g) was decreased by 4.6 log cycles after 28 d in samples containing WPI coating incorporated with N, MA, and EDTA. These findings demonstrated that the use of an edible film coating containing nisin, organic acids, and natural extracts is a promising means of controlling the growth and recontamination of L. monocytogenes, S. typhimurium, and E. coli O157:H7 in ready‐to‐eat poultry products.  相似文献   

5.
The antimicrobial effects of apple-, carrot-, and hibiscus-based edible films containing carvacrol and cinnamaldehyde against Escherichia coli O157:H7 on organic leafy greens in sealed plastic bags were investigated. Fresh-cut Romaine and Iceberg lettuce, and mature and baby spinach leaves were inoculated with E. coli O157:H7 and placed into Ziploc® bags. Edible films were then added to the bags, which were stored at 4°C. The evaluation of samples taken at days 0, 3, and 7 showed that on all leafy greens, 3% carvacrol-containing films had the greatest effect against E. coli O157:H7, reducing the bacterial population by about 5 log CFU/g on day 0. All three types of 3% carvacrol-containing films reduced E. coli O157:H7 by about 5 log CFU/g at day 0. The 1.5% carvacrol-containing films reduced E. coli O157:H7 by 1–4 logs CFU/g at day 7. Films with 3% cinnamaldehyde showed reduction of 0.6–3 logs CFU/g on different leafy greens.  相似文献   

6.
Whey protein isolate (WPI) films (pH 5.2) containing 0.5 to 1.0% p‐aminobenzoic acid (PABA) and/or sorbic acid (SA) were assessed for antimicrobial and mechanical properties while in contact with sliced bologna and summer sausage that were inoculated with Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella enterica subsp. enterica serovar Typhimurium DT104. WPI films containing SA or PABA decreased L. monocytogenes, E. coli, and S. Typhimurium populations by 3.4 to 4.1,3.1 to 3.6, and 3.1 to 4.1 logs, respectively, on both products after 21 d at 4 °C. Background flora was inhibited compared with controls. Film tensile strength decreased while % elongation remained unchanged following 72 h of product contact.  相似文献   

7.
Salmonella enterica, Staphylococcus aureus, Escherichia coli O157: H7, and Listeria monocytogenes may contaminate similar types of food and cause foodborne disease. The objective of this study was to develop a selective enrichment broth for simultaneous enrichment of Salmonella enterica, Staphylococcus aureus, Escherichia coli O157: H7, and Listeria monocytogenes (SSEL) using nalidixic acid, acriflavine, lithium chloride, and sodium cholate as selective agents. Developed SSEL broth not only enriched the target pathogens to 5 log10 CFU/ml after 18 hr incubation at 37°C with 10–100 CFU/mL of inoculation concentration, but also could successfully support the simultaneous enrichment of target pathogens with similar growth rates and inhibit the growth of most nontarget bacteria effectively. The enrichment effect of SSEL was confirmed by artificial contamination test coupled with multiplex PCR. In summary, SSEL has been shown to be a promising multiplex selective enrichment broth for the detection of the four pathogens on a single-assay platform.  相似文献   

8.
We investigated the potential use of biofilm formed by a competitive-exclusion (CE) microorganism to inactivate Escherichia coli O157:H7 on a stainless steel surface. Five microorganisms showing inhibitory activities against E. coli O157:H7 were isolated from vegetable seeds and sprouts. The microorganism with the greatest antimicrobial activity was identified as Paenibacillus polymyxa (strain T5). In tryptic soy broth (TSB), strain T5 reached a higher population at 25 °C than at 12 or 37 °C without losing inhibitory activity against E. coli O157:H7. When P. polymyxa (6 log CFU/mL) was co-cultured with E. coli O157:H7 (2, 3, 4, or 5 log CFU/mL) in TSB at 25 °C, the number of E. coli O157:H7 decreased significantly within 24 h. P. polymyxa formed a biofilm on stainless steel coupons (SSCs) in TSB at 25 °C within 24 h, and cells in biofilms, compared to attached cells without biofilm formation, showed significantly increased resistance to a dry environment (43% relative humidity [RH]). With the exception of an inoculum of 4 log CFU/coupon at 100% RH, upon exposure to biofilm formed by P. polymyxa on SSCs, populations of E. coli O157:H7 (2, 4, or 6 log CFU/coupon) were significantly reduced within 48 h. Most notably, when E. coli O157:H7 at 2 log CFU/coupon was applied to SSCs on which P. polymyxa biofilm had formed, it was inactivated within 1 h, regardless of RH. These results will be useful when developing strategies using biofilms produced by competitive exclusion microorganisms to inactivate foodborne pathogens in food processing environments.  相似文献   

9.
Escherichia coli O157:H7 attached to beef-contact surfaces found in beef fabrication facilities may serve as a source of cross-contamination. This study evaluated E. coli O157:H7 attachment, survival and growth on food-contact surfaces under simulated beef processing conditions. Stainless steel and high-density polyethylene surfaces (2 × 5 cm) were individually suspended into each of three substrates inoculated (6 log CFU/ml or g) with E. coli O157:H7 (rifampicin-resistant, six-strain composite) and then incubated (168 h) statically at 4 or 15 °C. The three tested soiling substrates included sterile tryptic soy broth (TSB), unsterilized beef fat-lean tissue (1:1 [wt/wt]) homogenate (10% [wt/wt] with sterile distilled water) and unsterilized ground beef. Initial adherence/attachment of E. coli O157:H7 (0.9 to 2.9 log CFU/cm2) on stainless steel and high-density polyethylene was not affected by the type of food-contact surface but was greater (p < 0.05) through ground beef. Adherent and suspended E. coli O157:H7 counts increased during storage at 15 °C (168 h) by 2.2 to 5.4 log CFU/cm2 and 1.0 to 2.8 log CFU/ml or g, respectively. At 4 °C (168 h), although pathogen levels decreased slightly in the substrates, numbers of adherent cells remained constant on coupons in ground beef (2.4 to 2.5 log CFU/cm2) and increased on coupons in TSB and fat-lean tissue homogenate by 0.9 to 1.0 and 1.7 to 2.0 log CFU/cm2, respectively, suggesting further cell attachment. The results of this study indicate that E. coli O157:H7 attachment to beef-contact surfaces was influenced by the type of soiling substrate and temperature. Notably, attachment occurred not only at a temperature representative of beef fabrication areas during non-production hours (15 °C), but also during cold storage (4 °C) temperatures, thus, rendering the design of more effective sanitation programs necessary.  相似文献   

10.
Spray washing is a common sanitizing method for the fresh produce industry. The purpose of this research was to investigate the antimicrobial effect of spraying slightly acidic electrolyzed water (SAEW) and a combination of ozonated water with ultraviolet (UV) in reducing Escherichia coli O157:H7 on romaine and iceberg lettuces. Both romaine and iceberg lettuces were spot inoculated with 100 μL of a 3 strain mixture of E. coli O157:H7 to achieve an inoculum of 6 log CFU/g on lettuce. A strong antimicrobial effect was observed for the UV‐ozonated water combination, which reduced the population of E. coli by 5 log CFU/g of E. coli O157:H7 on both lettuces. SAEW achieved about 5 log CFU/g reductions in the bacterial counts on romaine lettuce. However, less than 2.5 log CFU/g in the population of E. coli O157:H7 was reduced on iceberg lettuce. The difference may be due to bacteria aggregation near and within stomata for iceberg lettuce but not for romaine lettuce. The UV light treatment may stimulate the opening of the stomata for the UV‐ozonated water treatment and hence achieve better bacterial inactivation than the SAEW treatment for iceberg lettuce. Our results demonstrated that the combined treatment of SAEW and UV‐ozonated water in the spray washing process could more effectively reduce E. coli O157:H7 on lettuce, which in turn may help reduce incidences of E. coli O157:H7 outbreaks.  相似文献   

11.
The antimicrobial effect of thyme essential oil (EO) at supplementation levels of 0.3%, 0.6% or 0.9%, nisin at 500 or 1000 IU/g, and their combination, on Escherichia coli O157:H7 was examined in both tryptic soy broth (TSB) and minced beef meat. EO at 0.3% possessed a weak antibacterial activity against the pathogen in TSB, whereas at 0.9% showed unacceptable organoleptic properties in minced meat. Thus, only the level of 0.6% of EO was further examined against the pathogens in minced meat. Treatment of minced beef meat with EO at 0.6% showed an inhibitory activity against E. coli O157:H7 during storage at 10 °C, but not at 4 °C. Treatment of minced beef meat or TSB with nisin at 500 or 1000 IU/g did not show any antibacterial activity against E. coli O157:H7. The combination of EO at 0.6% and nisin at 500 or 1000 IU/g showed an additive effect against the pathogen, which was higher during storage at 10 °C than at 4 °C.  相似文献   

12.
Biofilm formation is a growing concern in the food industry. Escherichia coli O157:H7 is one of the most important foodborne pathogens that can persists in food and food‐related environments and subsequently produce biofilms. The efficacy of bacteriophage BPECO 19 was evaluated against three E. coli O157:H7 strains in biofilms. Biofilms of the three E. coli O157:H7 strains were grown on abiotic (stainless steel, rubber, and minimum biofilm eradication concentration [MBECTM] device) and biotic (lettuce) surfaces at different temperatures. The effectiveness of bacteriophage BPECO 19 in reducing preformed biofilms on these surfaces was further evaluated by treating the surfaces with a phage suspension (108 PFU/mL) for 2 h. The results indicated that the phage treatment significantly reduced (P  < 0.05) the number of adhered cells in all the surfaces. Following phage treatment, the viability of adhered cells was reduced by ≥3 log CFU/cm2, 2.4 log CFU/cm2, and 3.1 log CFU/peg in biofilms grown on stainless steel, rubber, and the MBECTM device, respectively. Likewise, the phage treatment reduced cell viability by ≥2 log CFU/cm2 in biofilms grown on lettuce. Overall, these results suggested that bacteriophages such as BPECO 19 could be effective in reducing the viability of biofilm‐adhered cells.  相似文献   

13.
H. Yang    Y. Cheng    B.L. Swem    Y. Li 《Journal of food science》2003,68(3):1008-1012
Fresh‐cut lettuce inoculated with Salmonella enterica serovar Typhimurium and Escherichia coli O157:H7 was treated using cetylpyridinium chlorine (CPC) solution in a laboratory‐scale immersion spray system. With 0.7 kg/cm2 spray pressure and 1.5‐min spray time (ST), both bacteria were significantly reduced (P < 0.05) in 0.1% to 0.3% CPC spray treatments, compared with water spray controls. At the same ST, increasing spray pressure from 0.7 to 2.1 kg/cm2 further reduced bacteria by 0.5 to 1.5 log colony‐forming units (CFU)/g. The 0.2% and 0.3% CPC treatments resulted in the greatest reduction of S. serovar Typhimurium and E. coli O157:H7, respectively. Similar bacterial reduction could be achieved using shorter ST with extended post‐spray exposure time. No color change on the lettuce was observed after CPC treatment.  相似文献   

14.
The fate of Listeria monocytogenes, Salmonella typhimurium, or Escherichia coli O157:H7 were separately monitored both in and on soudjouk. Fermentation and drying alone reduced numbers of L. monocytogenes by 0.07 and 0.74 log10 CFU/g for sausages fermented to pH 5.3 and 4.8, respectively, whereas numbers of S. typhimurium and E. coli O157:H7 were reduced by 1.52 and 3.51 log10 CFU/g and 0.03 and 1.11 log10 CFU/g, respectively. When sausages fermented to pH 5.3 or 4.8 were stored at 4, 10, or 21 °C, numbers of L. monocytogenes, S. typhimurium, and E. coli O157:H7 decreased by an additional 0.08–1.80, 0.88–3.74, and 0.68–3.17 log10 CFU/g, respectively, within 30 days. Storage for 90 days of commercially manufactured soudjouk that was sliced and then surface inoculated with L. monocytogenes, S. typhimurium, and E. coli O157:H7 generated average D-values of ca. 10.1, 7.6, and 5.9 days at 4 °C; 6.4, 4.3, and 2.9 days at 10 °C; 1.4, 0.9, and 1.6 days at 21 °C; and 0.9, 1.4, and 0.25 days at 30 °C. Overall, fermentation to pH 4.8 and storage at 21 °C was the most effective treatment for reducing numbers of L. monocytogenes (2.54 log10 CFU/g reduction), S. typhimurium (5.23 log10 CFU/g reduction), and E. coli O157:H7 (3.48 log10 CFU/g reduction). In summary, soudjouk-style sausage does not provide a favorable environment for outgrowth/survival of these three pathogens.  相似文献   

15.
Yunjung Kim  Minhee Kim  Kyung Bin Song 《LWT》2009,42(10):1654-1658
Effect of fumaric acid, chlorine dioxide (ClO2), and UV-C treatment was examined on the inactivation of microorganisms in alfalfa and clover sprouts. Clover sprouts were irradiated with UV-C light (1–10 kJ/m2), and the treatment decreased the population of total aerobic bacteria by 1.03–1.45 log CFU/g. Clover sprouts inoculated with pathogenic bacteria were treated with various concentration of fumaric acid, and 0.5 g/100 ml fumaric acid treatment was the most effective. In addition, the combined treatment of fumaric acid (0.5 g/100 ml)/UV-C (1 kJ/m2) reduced the populations of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes inoculated on clover sprouts by 3.02, 2.88, and 2.35 log CFU/g. Alfalfa sprouts were treated with ClO2, fumaric acid, and the combination of fumaric acid/ClO2. The combined treatment was the most effective, and it reduced the total aerobic bacteria by 3.18 log CFU/g as well as the initial populations of E. coli O157:H7, S. typhimurium, and L. monocytogenes inoculated on alfalfa sprouts by 4.06, 3.57, and 3.69 log CFU/g. These results suggest that the combined treatment of fumaric acid with UV-C or ClO2 can be useful for improving the microbial safety of alfalfa and clover sprouts.  相似文献   

16.
Soybean hulls or seed coats consist of complex carbohydrates, proteins, lipids, and polyphenols such as anthocyanidins, proanthocyanidins, and isoflavones. The polyphenolics in the seed coats give them various colors such as black, brown, green, yellow, or even a mottled appearance. In this study, the antimicrobial effects of phenolic extracts from the seed coats of different colored soybeans (yellow, dark brown, brown, and black) were evaluated against foodborne pathogens such as Salmonella Typhimurium, Escherichia coli O157:H7, and Campylobacter jejuni in broth‐cultures as well as on chicken skin. The highest total phenolic content was observed for the phenolic extract from soybean variety (R07‐1927) with black colored seed coat (74.1 ± 2.1 mg chlorogenic acid equivalent [CAE]/g extract) and was significantly different (P <0.0001) from the extract of the conventional soybean variety (R08‐4004) with yellow colored seed coat (7.4 ± 1.2 mg CAE/g extract). The extract from black colored soybean produced reductions of 2.10 ± 0.08 to 2.20 ± 0.08‐log CFU/mL for both E. coli O157:H7 and C. jejuni after 3 d when incubated in broth‐culture having 4‐log CFU/mL of bacteria, whereas a 6 d incubation was found to reduce S. Typhimurium and E. coli O157:H7 at 2.03 ± 0.05 and 3.3 ± 0.08‐log CFU/mL, respectively. The extract also reduced S. Typhimurium and E. coli O157:H7 attached to chicken skin by 1.39 ± 0.03 and 1.24 ± 0.06‐log CFU/g, respectively, upon incubation for 6 d. Soybean seed coat extracts may have a potency as antimicrobial agents to reduce foodborne bacteria contaminating poultry products.  相似文献   

17.
Rico Suhalim  Gary J. Burtle 《LWT》2008,41(6):1116-1121
Survival of Escherichia coli O157:H7 in channel catfish (Ictalurus punctatus), pond and holding tank water was investigated. Water from three channel catfish ponds was inoculated with ampicillin/nalidixic acid-resistant E. coli O157:H7 transformed with a plasmid encoding for green fluorescent protein at 105, 106, and 107 CFU/ml. Samples were taken from surface, internal organs, and skin scrape of fish and pond water for E. coli O157:H7 enumeration on brain heart infusion (BHI) agar containing ampicillin and nalidixic acid. To determine the survival of E. coli O157:H7 in catfish holding tank water from two farmers markets, the water was inoculated with 107E. coli O157:H7 CFU/ml. E. coli O157:H7 were detected by direct plating for 33 and 69 d in pond and holding tank water, respectively. A rapid decrease of the pathogen was observed in the first 2 weeks to reach 2 log CFU/ml. When E. coli O157:H7 was not recovered by direct plating, the pathogen was isolated by enrichment in TSB for approximately another 30 d from pond and holding tank water. The populations of E. coli O157:H7 found in the internal organs and skin scrape were 5.5 log and 2.5 log CFU/ml, respectively. E. coli O157:H7 from internal organs and water were recovered for at least 12 d. Results suggest that E. coli O157:H7 can survive in channel catfish pond and holding tank water and channel catfish may become a potential carrier of the pathogen.  相似文献   

18.
The significance of fresh vegetable consumption on human nutrition and health is well recognized. Human infections with Escherichia coli O157:H7 and Salmonella enterica linked to fresh vegetable consumption have become a serious public health problem inflicting a heavy economic burden. The use of contaminated livestock wastes such as manure and manure slurry in crop production is believed to be one of the principal routes of fresh vegetable contamination with E. coli O157:H7 and S. enterica at preharvest stage because both ruminant and nonruminant livestock are known carriers of E. coli O157:H7 and S. enterica in the environment. A number of challenge‐testing studies have examined the fate of E. coli O157:H7 and S. enterica in the agricultural environment with the view of designing strategies for controlling vegetable contamination preharvest. In this review, we examined the mathematical modeling approaches that have been used to study the behavior of E. coli O157:H7 and S. enterica in the manure, manure‐amended soil, and in manure‐amended soil–plant ecosystem during cultivation of fresh vegetable crops. We focused on how the models have been applied to fit survivor curves, predict survival, and assess the risk of vegetable contamination preharvest. The inadequacies of the current modeling approaches are discussed and suggestions for improvements to enhance the applicability of the models as decision tools to control E. coli O157:H7 and S. enterica contamination of fresh vegetables during primary production are presented.  相似文献   

19.
The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of vanillin against Listeria monocytogenes Scott A and Escherichia coli O157:H7 was determined in tripticase soy broth (TSB), pH 7 and 6, incubated at 35 °C/24 h and in semi-skim milk incubated at 35 °C/24 h and 7 °C/14 days. The influence of the fat content of milk on the antimicrobial activity of vanillin was tested in whole and skim milk incubated at 7 °C/14 days. Mixtures of clove and cinnamon with vanillin were also evaluated in semi skim milk incubated at 7 °C. The MICs for L. monocytogenes were 3,000 ppm in TSB (pH 7) and 2,800 ppm in TSB (pH 6). The MICs for E. coli O157:H7 were 2,800 ppm in TSB (pH 7) and 2,400 ppm in TSB (pH 6). The MBCs in TSB were 8,000 ppm for L. monocytogenes and 6,000 ppm for E. coli O157:H7. The pH values assayed did not influence significantly the MIC or MBC in TSB. The MICs in semi-skim milk for L. monocytogenes and E. coli O157:H7 were 4,000 and 3,000 ppm at 35 °C/24 h, and 2,500 and 1,000 ppm at 7 °C/7 days, respectively. The MBCs were 20,000 ppm for L. monocytogenes and 11,000 ppm for E. coli O157:H7. High incubation temperatures did not affect the MBC but increased the MIC of the vanillin in milk. This effect could be attributed to the increased membrane fluidity and to the membrane perturbing activity of vanillin at low temperatures. The fat in milk reduced significantly the antimicrobial activity of vanillin, probably due to effect protective of the fat molecules. Mixtures of clove and cinnamon leaves inhibited the growth of L. monocytogenes in a similar way that vanillin alone but had a synergistic effect on the E. coli O157:H7. Mixtures of cinnamon bark and vanillin had always a synergistic effect and some of the combination assayed showed bactericidal activity on the population of L. monocytogenes and E. coli O 157:H7.  相似文献   

20.
The antimicrobial potential of switchgrass extractives (SE) was evaluated on cut lettuce leaves and romaine lettuce in planta, using rifampicin-resistant Escherichia coli O157:H7 and Salmonella Typhimurium strain LT2 as model pathogens. Cut lettuce leaves were swabbed with E. coli O157:H7 or S. Typhimurium followed by surface treatment with 0.8% SE, 0.6% sodium hypochlorite, or water for 1 to 45 min. For in planta studies, SE was swabbed on demarcated leaf surfaces either prior to or after inoculation of greenhouse-grown lettuce with E. coli O157:H7 or S. Typhimurium; the leaf samples were collected after 0, 24, and 48 h of treatment. Bacteria from inoculated leaves were enumerated on tryptic soy agar plates (and also on MacConkey's and XLT4 agar plates), and the recovered counts were statistically analyzed. Cut lettuce leaves showed E. coli O157:H7 reduction between 3.25 and 6.17 log CFU/leaf, whereas S. Typhimurium reductions were between 2.94 log CFU/leaf and 5.47 log CFU/leaf depending on the SE treatment durations, from initial levels of ∼7 log CFU/leaf. SE treatment of lettuce in planta, before bacterial inoculation, reduced E. coli O157:H7 and S. Typhimurium populations by 1.88 and 2.49 log CFU after 24 h and 3 h, respectively. However, SE treatment after bacterial inoculation of lettuce plants decreased E. coli O157:H7 populations by 3.04 log CFU (after 0 h) with negligible reduction of S. Typhimurium populations. Our findings demonstrate the potential of SE as a plant-based method for decontaminating E. coli O157:H7 on lettuce during pre- and postharvest stages in hurdle approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号