首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural materials proposed for use in future fusion energy systems must perform reliably in an environment consisting of intense neutron irradiation, high temperatures, and cyclic stress. Therefore, thermal creep and creep-fatigue (in addition to irradiation creep) are anticipated to be important issues for the engineering design of structural materials for fusion reactors. The key materials systems under consideration for structures of fusion reactors include 8–9%Cr ferritic/martensitic steels, oxide dispersion strengthened ferritic steels, vanadium alloys and SiC fiber-reinforced SiC matrix ceramic composites. The current elevated temperature creep-fatigue design rules based on the American Society of Mechanical Engineers (ASME) code are discussed, along with a brief review of creep-fatigue interaction mechanisms. Refinements to current international design codes to include radiation-induced phenomena such as reduction in uniform elongation have been performed in association with the engineering design of the ITER fusion energy device currently under construction in France. Several other creep-fatigue issues of potential importance for fusion energy applications are discussed.  相似文献   

2.
A model was developed to explain the mechanism of the degradation of fatigue lives caused by the growth of transgranular crack without cavitational damage in spite of the creep-fatigue loading condition for some type 304L stainless steel and 1Cr-Mo-V steel. The model was developed by incorporating the stress relaxation effect during tensile hold time into the pure fatigue crack growth model based on the crack-tip shearing process. In the crack-tip region, the stress relaxation during hold time at the tensile peak stress reduces the maximum stress level but accumulates inelastic strain, which induces creep crack growth during hold time and enhances subsequent fatigue crack growth during subsequent loading by promoting the crack-tip shearing process. The predicted creep-fatigue lives by the model were in good agreement with the actual lives for type 304L stainless steel at 823 and 865 K and for 1Cr-Mo-V rotor steel at 823 K. The model was further expanded to explain the degradation of the life under the conditions of compressive hold cycling for 1Cr-Mo-V and 12Cr-Mo-V steels.  相似文献   

3.
Crack growth behavior at high temperatures under cyclic, static, and combined loads was studied in annealed and 20 pct cold-worked Type 316 and 20 pct cold-worked Type 304 austenitic stainless steels in air and vacuum. Under cyclic load, crack growth rates in annealed Type 316 steel are slightly lower in vacuum than in air, but this difference decreases with increase in crack growth rate. Most importantly, the effect of temperature on crack growth is present even in vacuum and arises mostly from the variation of elastic modulus with temperature. In the cold-worked Type 316 steel, the pronounced hold-time effects on fatigue crack growth in air reported in the literature persists even in vacuum. This implies that at high crack growth rates these hold-time effects arise mostly from creep-fatigue interaction rather than environment fatigue interaction. Environment has a negligible effect also on crack growth under static load. Thus, time dependent crack growth in these steels is due to creep processes. Crack growth behavior in annealed and cold-worked materials are compared and reasons for the enhanced time dependent crack growth in cold-worked material are discussed in detail.  相似文献   

4.
In low cycle fatigue at elevated temperature, the interaction between fatigue crack and creep damages is known to be responsible for the significant reduction of the fatigue life. In this investigation, a model for the life prediction for low cycle fatigue with hold time at tensile peak strain is suggested for the temperature range of 0.5T m. This model is formulated on the basis of the assumptions that the creep cavities are formed due to the vacancies generated during fatigue, and are grown during the hold period. The fatigue crack nucleated at the surface due to fatigue loading is affected by the creep damages for its propagation. The model is checked by experimental results with various hold time periods. The predicted creep-fatigue lives are in good agreement with experimentally observed ones for 304 stainless steel and 13CrMo44 steel. Formerly Graduat3e student, Department of Materials Science and Engeneering ,KAIST, Seoul, Korea.  相似文献   

5.
刘城城  任英  张立峰 《钢铁研究学报》2022,34(11):1256-1266
摘要:为研究淬火温度对不同铬含量的马氏体不锈钢组织和性能的影响,采用高温共聚焦显微镜(CLSM)、光镜(OM)、扫描电镜(SEM)、万能拉伸机、显微硬度计等方法对材料组织和性能进行了测试及表征。随着淬火温度的升高,不锈钢淬火后的晶粒尺寸都变大,计算确定了13%Cr和14%Cr不锈钢的晶界迁移能分别为113.62和125.92J/mol。13%Cr不锈钢经过淬火后显微组织为板条马氏体,回火后的组织为回火马氏体。但是,14%Cr不锈钢在1200℃淬火后生成了板条马氏体和少量的高温铁素体,并且在回火后高温铁素体并未消失,会对后续性能产生影响。淬火温度对不锈钢的强度影响不大。不锈钢中的铬质量分数从13%增加至14%,马氏体不锈钢强度增加,但伸长率有所降低。马氏体不锈钢的硬度随淬火温度的升高而下降,这主要与晶粒尺寸有关。  相似文献   

6.
Development of advanced materials alongwith improved high temperature mechanical properties, particularly creep and fatigue are important and play a major role for the successful development of robust, safe and economical sodium cooled fast reactor (SFR) technology. The components of SFRs operate in demanding environments at high temperatures under complex creep, fatigue and creep-fatigue loading conditions. Based upon the service requirements in terms of different environments, temperature and loading conditions, different materials are chosen for different components. Ti modified 15Cr-15Ni austenitic stainless steel is chosen for clad and wrapper tubes in the reactor core, which experience high fast neutron flux of ~ 1015 ncm?2s?1 along with high temperatures. Type 316L(N) SS is used for out-of-core structural components like main and inner vessels, and sodium pipelines. For steam generators, modified 9Cr-1Mo steel is chosen for all the components, where liquid sodium and steam/water coexist. Some of the important experiences and exciting achievements in the areas of in-house materials development and its characterization in terms of creep, low cycle fatigue and creep-fatigue properties important to design of reactor components for core, out-of-core and steam generator applications are described in the paper. Future directions for materials research and development activities involving critical issues like radiation damage resistance along with improved mechanical properties for advanced clad and wrapper materials necessary for achieving high fuel burnup and design life up to 60 years for out-of-core structural components leading to economical nuclear energy have been highlighted.  相似文献   

7.
Thermomechanical fatigue (TMF) tests on the austenitic stainless steel AISI 304L have been conducted under “true≓ plastic-strain control in vacuum. This report considers the damage oc-curring during TMF loading. It is shown how the temperature interval and the phasing (in-phase, out-of-phase) determine the mechanical response and the lifetime of the specimens. If creep-fatigue interaction takes place during in-phase cycling, the damage occurs inside the ma-terial, leading to intergranular cracks which reduce the lifetime considerably. Out-of-phase cy-cling inhibits creep-induced damage, and no lifetime reduction occurs, even if the material is exposed periodically to temperatures in the creep regime. A formula is proposed which allows prediction of the failure mode, depending on whether creep-fatigue damage occurs or not. At a given strain rate, the formula is able to estimate the temperature of transition between pure fatigue and creep-fatigue damage. H.J.Christ formerly with the University of Erlangen.  相似文献   

8.
Stainless steels are used predominantly for their corrosion resistance in moderate to highly aggressive environments. For construction purposes, engineers normally select carbon steel due to low cost, long experience, applicable design rules and a large variety of strength classes. However, different stainless steel types can also provide a very wide range of mechanical properties and they have the advantage of not needing surface protection. Duplex Stainless Steels (DSSs) in particular, are austeno-ferritic steels with twice the mechanical strength of conventional austenitic and ferritic stainless steels and have a potential use in construction. In the early 1980’s, a ‘second generation’ of duplex steels was introduced with better weldability mainly through nitrogen alloying. The most common duplex grade today is the UNS S32205/S31803, which is used in a great number of applications in a wide variety of product forms. This grade was the basis for the development of a ‘third generation’ of duplex steels. These higher alloys are called super-duplex stainless steels and identified as UNS S32750/S32760. The cyclic hardening-softening response, the cyclic stress-strain curve and the microstructure evolution of a high nitrogen duplex stainless steel S32750 have been evaluated and the results compared with reference to low and medium nitrogen duplex stainless steels, S32205 and S32900 grades, respectively. The beneficial effects of nitrogen on the cyclic properties of most modern alloys have been analyzed in terms of the flow stress components, i.e. the back and the friction stress. A phenomenological model is proposed to explain the influence of nitrogen atoms on the cyclic behavior of these steels.  相似文献   

9.
The objectives of the present study are to observe and model physical damage induced by cyclic multiaxial (tension-torsion) loading of 316L stainless steel both at room temperature and at elevated temperature (600 °C). Four types of experiments were carried out on thin tubular specimens: (a) continuous pure fatigue (PF) tests; (b) PF sequential tests with different sequences of push-pull and torsional loading; (c) creep-fatigue (CF) tests with superimposed hold time at maximum tensile strain; and (d) sequential tests involving sequences of PF and CF loadings. Optical microscopy and scanning electron microscopy (SEM) were used to study quantitatively the damage, in particular, to determine the orientation of cracks and to measure the kinetics of crack nucleation and crack growth. It is shown that in pure fatigue at 600 °C, the classical crack initiation stage I is bypassed due to a strong interaction between cyclic plasticity, oxidation, and cracking. Intense slip bands act as diffusional short circuits, leading to the formation of external (Fe2O3) and internal ((FeCr)3O4) oxide scales. The orientation of the microcracks during initiation and propagation stages, which is strongly affected by oxidation effects, explains qualitatively the significant deviations observed in the sequential tests from the Miner linear damage cumulative rule. It is also shown that creep-fatigue damage, which involves intergranular damage, is a complex process rather than a simple superposition of fatigue and creep damage. A stochastic model based on a Monte-Carlo simulation is developed. This model, which accounts very well for the situations in which crack initiation and crack propagation are coplanar, includes damage equations based on quantitative metallographical observations. Damage is modeled as the continuous nucleation of a population of growing cracks which eventually coalesce to lead to final fracture. It is shown that this simulation is able to reproduce with a good accuracy the fatigue lives measured under multiaxial continuous and sequential tests. formerly with Ecole des Mines, is Visiting Scientist, Ice formerly with Ecole des Mines, is Visiting Scientist, Ice formerly with Ecole des Mines, is Visiting Scientist, Ice  相似文献   

10.
High temperature low cycle fatigue (LCF) is influenced by various time dependent processes such as creep, oxidation, phase transformations and dynamic strain ageing (DSA) depending on test conditions of strain rate and temperature. In this paper the detrimental effects of DSA and oxidation in high temperature LCF are discussed with reference to extensive studies on 316L(N) stainless steel. DSA has been found to enhance the stress response and reduce ductility. It localizes fatigue deformation, enhances fatigue cracking and reduces fatigue life. High temperature oxidation accelerates transgranular and intergranular fatigue cracking during long hold time tests in austenitic stainless steel. In welds, microstructural features such as presence of coarse grains and formation of brittle phases due to transformation of δ ferrite during testing influence crack initiation, propagation and fatigue life.  相似文献   

11.
The low-cycle fatigue results of three heats of Type 304 stainless steel have been ob-tained at 593°C under selected cyclic-loading conditions. The results are compared with those generated for a reference heat of steel for which extensive low-cycle fatigue data are available. Observation of the microstructures of specimens in the pretest condition after a given heat treatment and examination of fatigue fracture surfaces were con-ducted by means of optical and scanning electron microscopy and X-ray analysis. The three heats of stainless steel, which exhibit different microstructural features, show approximately the same continuous-cycling low-cycle fatigue behavior as that of the re-ference heat. However, the three materials show improved fatigue strength during tensile hold-time conditions where significant creep occurs. The fatigue properties determined in the present study for the different heats of steel are consistent with the observed mi-crostructural features. Finally, the creep-fatigue properties of the heats as well as the microstructural observations are discussed in terms of a damage-rate approach re-cently developed by the authors.  相似文献   

12.
The aim of the present paper is to study the low cycle fatigue and creep-fatigue interaction behavior of modified 9Cr-1Mo ferritic steel weld joint. Total axial strain controlled continuous cycling tests were conducted between 773 K and 873 K and at strain amplitudes ±0.25%, ±0.4%, ±0.6% and ±1%. Hold tests were also conducted at +0.6% and 823 K and 873 K temperatures to study the creep-fatigue interaction behavior of the weld joint. The alloy exhibited cyclic softening from first cycle onwards irrespective of the loading conditions. Failure location in the weld joint was correlated to the test parameters. Detailed replica study conducted on all the failed specimens revealed that most of the failures occurred in one side of the heat affected zone (HAZ) of the weld joint. Strain localization in the soft zone of the HAZ and subsurface creep cavity formation in this region and their linkage had caused enhanced crack propagation that translated into lower fatigue life of the weld joint at high temperatures. Type IV mode of failure was identified to be operative under tensile hold and high temperatures. The alloy was also found to be compressive dwell sensitive and it was ascertained that the lower life under compression hold compared to tension hold was due to the deleterious effect of oxidation.  相似文献   

13.
随着汽车行业的发展,汽车排气系统热端用铁素体不锈钢的使用温度越来越高,高温性能成为限制其发展的关键性能。研究铌含量对铁素体不锈钢组织与高温性能的影响可以指导钢种设计和工业化生产。选取了2种17%Cr超纯铁素体不锈钢进行高温时效试验,结果表明:铌的质量分数为0.2%时,铌没有明显的强化作用,950℃高温下晶粒迅速长大,高温强度迅速降低;铌的质量分数为0.4%时,在950℃高温下时效,材料中析出弥散第二相粒子Fe2Nb,阻止晶粒长大,提高强度,防止高温引起的材料软化。材料的高温强度是由固溶铌以及铌析出物的共同作用引起的,当固溶铌析出形成析出物时,固溶铌含量减少引起的强度降低以及析出引起强度升高的竞争导致了材料的强度变化。  相似文献   

14.
Sodium cooled fast reactors (SFRs) are designed to operate at high temperatures with an initial design life of about 40 years. Austenitic stainless steel (SS) types 304 and 316 and their variants have been generally used for out-of-core structural components of the reactor assembly system. The choice of these two grades of stainless steels is decided by several important factors such as high temperature mechanical properties like creep, low cycle fatigue and creep-fatigue interaction, compatibility with liquid sodium coolant, weldability, fabricability and cost. The components which operate in the creep temperature range are made of 316 SS. This material has been used extensively in the early SFRs. Studies on long term creep properties of 316 SS have clearly established the good creep resistance of this material and the microstructural stability at temperatures below 873 K. In view of the susceptibility of welded components to stress corrosion cracking, low carbon grades of 304 and 316 SS with alloying addition of nitrogen (designated as 304L(N) SS and 316L(N) SS) are used for structural components of later generation of SFRs. Nitrogen addition in the range of 0.06–0.08 wt% produces significant improvement in the creep properties of this material through solid solution strengthening and lowering of stacking fault energy. In view of the recent trends to increase the design life of SFRs to 60 years and more, it is necessary that non-replaceable structural components of reactor assembly have sufficient high temperature mechanical properties over such very long periods of operation. Increasing the nitrogen content from 0.06–0.08 wt % to levels of 0.12–0.14 wt% has been found to increase creep rupture life of 316LN SS by an order of magnitude. The beneficial effects of nitrogen are also extended to type 316 SS weld metal. This paper discusses the progressive improvements in the creep properties of 316 SS grade by varying the amounts of interstitial elements carbon and nitrogen.  相似文献   

15.
Generation IV reactors are being developed to produce a reliable energy safely and with an economic benefit, because nuclear energy is being seriously considered to meet the increasing demand for a world-wide energy supply without environmental effects. Ferritic/martensitic steels are attracting attention as candidate materials for the Gen-IV reactors due to their high strength and thermal conductivity, low thermal expansion, and good resistance to corrosion. In recent years, new ferritic/martensitic steels have been developed for ultra supercritical fossil power plants through advanced technologies for steel fabrication. The microstructural stability of these materials for the pressure vessel, cladding and core structure of the VHTR and SFR is very important. Nitrogen is a precipitation hardening element, and the thermal stability of nitrides is superior to that of carbides. So the formation of nitrides may improve the thermal stability of the microstructure and eventually increase the creep rupture strength of high Cr steels. The effect of nitrogen on the creep rupture strength and microstructure evolution of nitrogen-added Mod.9Cr-1Mo steels has been studied. Creep testing was carried out at 873 and 923 K under constant load conditions. The optimum controlled Cr2X precipitates were developed by special heat treatment, and they were not dissolved after a creep deformation. These fine and stable Cr2X precipitates contributed to the increase of the creep rupture strength. The prior austenite grain size and martensite lath width were decreased by the resultant stable nitrides.  相似文献   

16.
马氏体不锈钢成分、工艺和耐蚀性的进展   总被引:5,自引:0,他引:5  
白鹤  王伯健 《特殊钢》2009,30(2):30-33
介绍了马氏体铬不锈钢、马氏体铬镍不锈钢和马氏体时效不锈钢的进展和发展动态,讨论了化学成分、热加工、热处理工艺对马氏体不锈钢组织和耐蚀性的影响。当前国内开发的新型马氏体不锈钢主要为符合给定服役条件的专用钢类。优化化学成分,提高钢的纯净度,通过热加工和热处理工艺控制钢的组织,进行表面处理是提高马氏体不锈钢耐蚀性的有效途径。  相似文献   

17.
Creep tests were carried out at 823 K (550 °C) and 210 MPa on Reduced Activation Ferritic-Martensitic (RAFM) steel which was subjected to different extents of prior fatigue exposure at 823 K at a strain amplitude of ±0.6 pct to assess the effect of prior fatigue exposure on creep behavior. Extensive cyclic softening that characterized the fatigue damage was found to be immensely deleterious for creep strength of the tempered martensitic steel. Creep rupture life was reduced to 60 pct of that of the virgin steel when the steel was exposed to as low as 1 pct of fatigue life. However, creep life saturated after fatigue exposure of 40 pct. Increase in minimum creep rate and decrease in creep rupture ductility with a saturating trend were observed with prior fatigue exposures. To substantiate these findings, detailed transmission electron microscopy studies were carried out on the steel. With fatigue exposures, extensive recovery of martensitic-lath structure was distinctly observed which supported the cyclic softening behavior that was introduced due to prior fatigue. Consequently, prior fatigue exposures were considered responsible for decrease in creep ductility and associated reduction in the creep rupture strength.  相似文献   

18.
Martensitic stainless steel containing 12%-18%Cr have high hardness due to high carbon content. These steels are common utilized in quenching and tempering processes for knife and cutlery steel.The properties obtained in these materials are significantly influenced by matrix composition after heat treatment,especially as Cr and C content.Comprehensive considered the hardness and corrosion resistance,a new type martensitic stainless steel 6Cr15MoV has been developed.This study emphatic researches the effect of heat treatment processes on microstructure and mechanical properties of 6Cr15MoV martensitic stainless steel.Thermo-Calc software has been carried out to thermodynamic calculation;optical microscope(OM),scanning electronic microscope(SEM) and transmission electron microscope(TEM) have been carried out to microstructure observation;hardness and impact toughness test have been carried out to evaluate the mechanical properties.Results show that the equilibrium carbide in 6Cr15MoV steel is M23,C6 carbide,and finely distributed of M23C6 carbides can be observed on annealed microstructure of 6Cr15MoV stainless steel.6Cr15MoV martensitic stainless steel has a wider quenching temperature range,the hardness value of steel 6Cr15MoV can reach to 60.8 -61.6 HRC when quenched at 1060 - 1100℃.Finely distributed carbides will exist in quenched microstructure,and effectively inhabit the growth of austenite grain.With the increasing of quenching temperature,the volume fraction of undissolved carbides will decrease.The excellent comprehensive mechanical properties can be obtained by quenched at 1060-1100℃with tempered at 100-150℃,and it is mainly due to the high carbon martensite and fine grain size.At these temperature ranges,the hardness will retain about 59.2-61.6 HRC and the Charpy U-notch impact toughness will retain about 17.3-20 J.The morphology of impact fracture surface of tested steel is small dimples with a small amount of cleavage planes.The area of cleavage planes increases with the increasing of tempering temperature.  相似文献   

19.
Material behavior under creep-fatigue interaction has been receiving wide attention in association with the development of fast reactor plants. A considerable effort has been undertaken for developing methods which can predict failure life with reasonable accuracy. However, no established consensus seems to have been reached yet, for creep-fatigue liofe prediction due to its more complex nature compared to failures under pure creep or pure fatigue conditions. This paper summarizes the results of creep-fatigue tests performed on several alloys used in the power generation industry and clarifies common characteristics and differences concerning their behavior. Then the representative failure prediction methods are applied to tension-hold creep-fatigue tests of these materials to study their performances for various types of alloy. Inter-relations existing between the stress-based and strain-based approaches for creep damage calculation and their consequence on life predictability are also discussed.  相似文献   

20.
In this study, the low‐cycle fatigue (LCF) behavior of powder metallurgy stainless steel/MgO partially stabilized zirconia (Mg‐PSZ) composite materials is presented. The steel matrix based on conventional AISI 304 steel (1.4301) is reinforced with Mg‐PSZ. The investigated composite materials were manufactured using the spark plasma sintering (SPS) technique. Total strain‐controlled LCF tests were performed on materials containing 0, 5, and 10 vol% Mg‐PSZ, respectively, in order to evaluate the influence of the ceramic reinforcement. Electron backscatter diffraction (EBSD) measurements were applied to identify the locations where the martensitic phase transformations in the steel matrix and stress‐assisted as well as athermal martensitic phase transformations of the Mg‐PSZ ceramic reinforcement take place. The resulting cyclic deformation behavior is correlated with the microstructural features of the composite material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号