首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitride-strengthened, reduced activation, martensitic steel is anticipated to have higher creep strength because of the remarkable thermal stability of nitrides. Two nitride-strengthened, reduced activation martensitic steels with different carbon contents were prepared to investigate the microstructure and mechanical property changes with decreasing carbon content. It has been found that both steels had the microstructure of full martensite with fine nitrides dispersed homogeneously in the matrix and displayed extremely high strength but poor toughness. Compared with the steel with low carbon content (0.005 pct in wt pct), the steel with high carbon content (0.012 pct in wt pct) had not only the higher strength but also the higher impact toughness and grain coarsening temperature, which was related to the carbon content. On the one hand, carbon reduction led to Ta-rich inclusions; on the other hand, the grain grew larger when normalized at high temperature because of the absence of Ta carbonitrides, which would decrease impact toughness. The complicated Al2O3 inclusions in the two steels have been revealed to be responsible for the initiated cleavage fracture by acting as the critical cracks.  相似文献   

2.
The structure and properties of high-temperature austenitic steels intended for superheater tubes are analyzed. Widely used Kh18N10T (AISI 304) and Kh16N13M3 (AISI 316) steels are found not to ensure a stable austenitic structure and stable properties during long-term thermal holding under stresses. The hardening of austenitic steels by fine particles of vanadium and niobium carbides and nitrides and γ′-phase and Fe2W and Fe2Mo Laves phase intermetallics is considered. The role of Cr23C6 chromium carbides, the σ phase, and coarse precipitates of an M 3B2 phase and a boron-containing eutectic in decreasing the time to failure and the stress-rupture strength of austenitic steels is established. The mechanism of increasing the stress-rupture strength of steels by boron additions is described. The chemical compositions, mechanical properties, stress-rupture strength, and creep characteristics of Russian and foreign austenitic steels used or designed for superheater tubes intended for operation under stress conditions at temperatures above 600°C are presented. The conditions are found for increasing the strength, plasticity, and thermodeformation stability of austenite in steels intended for superheater tubes operating at 700°C under high stresses for a long time.  相似文献   

3.
The new ferritic heat-resisting steels of 0.05C-10Cr-2Mo-0.10V-0.05Nb (Cb) composition with high creep rupture strength and good ductility have already been reported. The optimum amounts of V and Nb that can be added to the 0.05C-10Cr-2Mo steels and their effects on the creep rupture strength and microstructure of the steels have been studied in this experiment. The optimum amounts of V and Nb are about 0.10 pct V and 0.05 pct Nb at 600 °C for 10,000 h, but shift to 0.18 pct V and 0.05 pct Nb at 650 °C. Nb-bearing steels are preferred to other grades on the short-time side, because NbC precipitation during initial tempering stages delays recovery of martensite. On the long-time side, however, V-bearing steels have higher creep rupture strength. By adding V to the steels, electron microscopic examination reveals a stable microstructure, retardation during creep of the softening of tempered martensite, fine and uniform distribution of precipitates, and promotion of the precipitation of Fe2Mo.  相似文献   

4.
Modern advanced 9–12 % Cr steels are complex alloys with excellent creep strength even at high temperatures up to 620°C. The mechanical properties of these steels are significantly influenced by the presence and stability of various precipitate populations. Numerous secondary phases grow, coarsen and, sometimes, dissolve again during heat treatment and service, which leads to a varying obstacle effect of these precipitates on dislocation movement. In this work, the experimentally observed creep rupture strength of an modified 9–12% Cr steel developed in the European COST Group is compared to the calculated maximal obstacle effect (Orowan stress) caused by the precipitates present in these steels for different heat treatment conditions. It is shown that the differences in creep rupture strength caused by different heat treatments disappear after long time service. This observation is discussed on the basis of the calculated evolution of the precipitate microstructure. The concept of boosting long-term creep rupture strength by maximizing the initial creep strength with optimum quality heat treatment parameters for precipitation strengthening is critically assessed.  相似文献   

5.
Nitride-strengthened reduced activation ferritic/martensitic (RAFM) steels are developed taking advantage of the high thermal stability of nitrides. In the current study, the microstructure and mechanical properties of a nitride-strengthened RAFM steel with improved composition were investigated. Fully martensitic microstructure with fine nitrides dispersion was achieved in the steel. In all, 1.4?pct Mn is sufficient to suppress delta ferrite and assure the steel of the full martensitic microstructure. Compared to Eurofer97, the steel showed similar strength at room temperature but higher strength at 873?K (600?°C). The steel exhibited very high impact toughness and a low ductile-to-brittle transition temperature (DBTT) of 243?K (?C30?°C), which could be further reduced by purification.  相似文献   

6.
Besides the reduction of greenhouse gases the increase of thermal efficiency is one of the major goals in modern material development for process and power plants. Increasing the steam inlet temperatures and pressures is at present the favoured method to increase the thermal efficiency. For the realization of 700°C power plants, new creep resistant ferritic-martensitic 9–12 wt. % Cr steels are required to be applied in the 650°C temperature range. An important task for the optimization of long term creep properties is the characterization of the changes in the microstructure during creep exposure. A sufficient long term creep strength is based on a small initial size and slow coarsening of the M23C6 precipitates as well as the dynamic precipitation of small V(C, N) particles along with the absence of Z-phase. The paper describes the R&D activities of the MPA University of Stuttgart in the frame work of national and international research projects aimed at the development and long term characterisation of optimised martensitic steels with higher long term creep strength.  相似文献   

7.
The effect of tungsten on creep behavior and microstructural evolution was investigated for tempered martensitic 9Cr steels with various W concentrations from 0 to 4 wt pct. The creep rupture testing was carried out at 823, 873, and 923 K for up to 54 Ms (15,000 hours). The creep and creep rupture strength increased linearly with W concentration up to about 3 wt pct, where the steels consisted of the single constituent of the tempered martensite. It increased only slightly above 3 wt pct, where the matrix consisted of the tempered martensite and δ-ferrite. The minimum creep rate was described by a power law. The apparent activation energy for the minimum creep rate showed a tendency similar to the W concentration dependence of the creep-rupture strength and was larger than the activation energy for self-diffusion at high W concentrations above 1 wt pct. The martensite lath microstructure with fine carbides along lath boundaries was responsible for a high resistance to creep deformation. With increasing W con- centration, the martensite lath microstructure became stabilized, which decreased the minimum creep rate and increased the apparent activation energy for the minimum creep rate.  相似文献   

8.
The effects of aluminum content on mechanical properties of a 9Cr-0.5Mo-1.8W steel have been investigated. It was found that aluminum addition had a beneficial effect on toughness, but significantly reduced the creep resistance of the steel, especially on the long-term side. Examination of the microstructure and precipitation characteristics revealed that almost all of the aluminum added existed as AIN-type nitrides after normalizing and tempering. The undissolved AIN in high aluminum steels resulted in a dramatic refinement of prior austenite grains, which contributed to the improvement of toughness and was also partially responsible for the decreased creep rupture strength. The formation of AIN suppressed the precipitation of VN-type nitride; AIN also provided formation sites for Nb(C, N) and M23C6 type, which had an equivalent effect to the coalescence of these precipitates on AIN, resulting in the reduction of precipitate density and, therefore, decreased creep resistance.  相似文献   

9.
10.
The effect of Nb microalloying on microstructure, mechanical properties, and pitting corrosion properties of quenched and tempered 13?pct Cr-5?pct Ni-0.02?pct C martensitic stainless steels with different Mo and N contents was investigated. The microstructure, density, and dispersion of high-angle boundaries, nanoscale precipitates, and amount of retained austenite were characterized by using electron backscattered diffraction, transmission electron microscopy, and X-ray diffraction to correlate with properties. The results show that the combined effects of lowering nitrogen content in 13?pct Cr-5?pct Ni-1~2?pct Mo-0.02?pct C steels to 0.01?wt pct, and adding 0.1?pct Nb are to decrease the amount of Cr-rich precipitates, as Nb preferentially combines with residual carbon and nitrogen to form carbonitrides, suppressing the formation of Cr2N and Cr23C6. Austenite grain refinement can be achieved by Nb microalloying through proper heat treatment. If the nitrogen content is kept high, then Cr-rich precipitates would occur irrespective of microalloying addition. The NbN would also occur at high temperature, which will act as substrate for nucleation of coarse precipitates during subsequent tempering, impairing the toughness of the steel. It was shown that the addition of Nb to low interstitial super martensitic stainless steel retards the formation of reversed austenite and results in the formation of nanoscale precipitates (5 to 15?nm), which contribute to a significant increase in strength. More importantly, the pitting corrosion resistance was found to increase with Nb addition. This is attributed to suppression of Cr-rich precipitates, which can cause local depletion of Cr in the matrix and the initiation of pitting corrosion.  相似文献   

11.
The microstructure of a trial martensitic chromium steel containing a high content of boron (250 ppm) was characterized in detail in the as-tempered and aged conditions. This steel has a similar composition and heat treatment as the TAF steel that still is unsurpassed in creep strength among all 9 to 12 pct chromium steels. Characterization was performed by using scanning electron microscopy, energy-filtered transmission electron microscopy, secondary ion mass spectroscopy, and atom probe tomography. Focus was placed on investigating different types of precipitates that play a key role in improving the creep resistance of these steels. The low tempering temperature of 963 K (690 °C) is enough for the precipitation of the full volume fraction of both MX and M23C6. A high boron content, more than 1 at. pct, was found in M23C6 precipitates and they grow slowly during aging. The high boron level in the steel results in metal borides rather than BN with the approximate formula (Mo0.66Cr0.34)2(Fe0.75V0.25)B2. Two families of MX precipitates were found, one at lath boundaries about 35 nm in size and one dense inside the laths, only 5 to 15 nm in size.  相似文献   

12.
In the initial part the change of microstructure for steel X20 CrMoV 121 is discussed in terms of the distribution of carbide precipitates and its effects on accelerated creep resistance and hardness are presented. In the following, experimental results of microstructure and accelerated creep resistance are presented for the steels X20CrMoV 121 and P91 annealed for up to 8760 hours at 650°C and 750°C before the testing. A similar evolution of the distribution of carbide particles of a size above 102 nm is found for both steels, while the accelerated creep resistance is diminished much stronger for the steel X20CrMoV 121. This difference is due to a greater stability of NbC than that of VC precipitates, both related to the evolution of the chemical composition of complex chromium, molybdenum and iron carbide particles.  相似文献   

13.
Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowables and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed.  相似文献   

14.
In this study two different heat treatments were conducted on an X 37 Cr Mo V 5‐1 hot‐work tool steel, resulting either in a tempered fully martensitic matrix or a matrix almost consisting of tempered bainite. Short‐term creep tests were performed at a high stress level of 800 MPa and at temperatures in the range from 450 °C to 500 °C. Creep specimens consisting of a tempered fully martensitic microstructure exhibited a three times longer creep‐to‐rupture time, than those consisting of a tempered almost bainitic microstructure. Microstructural investigations of creep specimens were performed by transmission electron microscopy. Results of these investigations revealed that due to a lower cooling rate, which is necessary to form bainite, the tempered bainitic microstructure consists of large former bainitic plates, whereas tempered martensite shows fine former martensitic laths. Tempered bainite also exhibits a higher number density of large M3C, M7C3 and MC carbides than tempered martensite. Small M2C carbides appear in both microstructures in the same quantity, however, nanometer‐sized MC carbides could only be found in tempered martensite. Thus poor short‐term creep behavior of the tempered almost bainitic microstructure can be explained by the lesser amount of strengthening relevant precipitates, a smaller size‐effect due to distance of bainitic interfaces as well as lower solid solution hardening.  相似文献   

15.
Austenitic stainless steels are expected to be a major material for boiler tubes and steam turbines in future ultra-supercritical (USC) fossil power plants. It is of great interest to maximize the creep strength of the materials without increasing the cost. Precipitation strengthening was found to be the best and cheapest way for increasing the creep strength of such steels. This study is concerned with improving creep properties of a high nitrogen Nb-stabilized 15Cr-15Ni austenitic alloy through introducing a high number of nanosized particles into the austenitic matrix. The addition of around 4 wt pct Mn and 0.236 wt pct N into the 15Cr-15Ni-0.46Si-0.7Nb-1.25Mo-3Cu-Al-B-C matrix in combination with a special multicycled aging-quenching heat treatment resulted in the fine dispersion of abundant quantities of thermally stable (Nb,Cr,Fe)(C,N) precipitates with sizes of 10 to 20 nm. Apart from the carbonitrides, it was found that a high number of coherent copper precipitates with size 40 to 60 nm exist in the microstructure. Results of creep tests at 973 K and 1023 K (700 °C and 750 °C) showed that the creep properties of the investigated steel are superior compared to that of the commercial NF709 alloy. The improved creep properties are attributed to the improved morphology and thermal stability of the carbonitrides as well as to the presence of the coherent copper precipitates inside the austenitic matrix.  相似文献   

16.
Interstitial nitrogen considerably improves the corrosion resistance of low-tempered martensitic stainless steels. It may be introduced into the bulk by pressure melting or powder metallurgy and into a surface layer by case hardening. The new high-nitrogen steels (HNS) are suitable for stainless tools and bearings. High-tempered HNS are outstanding due to a fine dispersion of stable nitrides, which improve the hot and short time creep strength as well as the toughness. This may be used in hot-work tooling. Long time testing will have to prove whether HNS offer advantages in fossile power plants.  相似文献   

17.
Creep behavior and degradation of subgrain structures and precipitates of Gr. 122 type xCr-2W-0.4Mo-1Cu-VNb (x = 5, 7, 9, 10.5, and 12 pct) steels were evaluated during short-term and long-term static aging and creep with regard to the Cr content of steel. Creep rupture life increased from 5 to 12 pct Cr in the short-term creep region, whereas in the long-term creep region, it increased up to 9 pct Cr and then decreased with the addition of Cr from 9 to 12 pct. Behavior of creep rupture life was attributed to the size of elongated subgrains. In the short-term creep region, subgrain size decreased from 5 to 12 pct Cr, corresponding to the longer creep strength. However, in the long-term creep region after 104 hours, subgrain size increased up to 9 pct Cr and then decreased from 9 to 12 pct, corresponding to the behavior of creep rupture life. M23C6 and MX precipitates had the highest number fraction among all of the precipitates present in the studied steels. Cr concentration dependence of spacing of M23C6 and MX precipitates exhibited a V-like shape during short-term as well as long-term aging at 923 K (650  °C), and the minimum spacing of precipitates belonged to 9 pct Cr steel, corresponding to the lowest recovery speed of subgrain structures. In the short-term creep region, subgrain coarsening during creep was controlled by strain and proceeded slower with the addition of Cr, whereas in long-term creep region, subgrain coarsening was controlled by the stability of precipitates rather than due to the creep plastic deformation and took place faster from 9 to 12 pct and 9 to 5 pct Cr. However, M23C6 precipitates played a more important role than MX precipitates in the control of subgrain coarsening, and there was a closer correlation between spacing of M23C6 precipitates and subgrain size during static aging and long-term creep region.  相似文献   

18.
The effect of a low level of titanium on the microstructure and creep properties of 2.25 pct Cr-1 pct Mo steels has been examined as a function of carbon content and austenitizing temperature. The addition of 0.04 wt pct titanium resulted in a dramatic increase in creep strength at 565 °C, and this was found to be associated with the presence in the microstructure of very small (50 to 100 Å) titanium-bearing precipitates based upon both TiC and Mo2C. The variation of the minimum creep rate with carbon content and austenitizing treatment was explained in terms of the solubility of TiC in austenite. The titanium-bearing carbides have an important effect on microstructural stability and on the maintenance of creep strength, but it is also apparent that solid solution strengthening by molybdenum can make a significant contribution to creep strength at low carbon levels (0.02 wt pct).  相似文献   

19.
In the last three decades new stronger modified 9%Cr steels have been introduced in new power plants with steam parameters up to 300 bar(1 bar =10~5 Pa) and 600℃. In order to further increase the steam parameters of steel based power plants up to a target value of 650℃/ 325 bar it is necessary to double the creep strength compared with todays strongest 9%Cr steels,and at the same time the resistance against steam oxidation must be improved by adding 12%Cr to the steel. However,so far all attempts to make stronger 12%Cr steels have been unsuccessful because the high chromium content introduced severe microstructure instabilities in the tested steels.Recently,it was found that the microstructure instabilities in 11%- 12%Cr steels can be explained by the precipitation of coarse Cr(V,Nb)N Z-phases, which dissolve fine(V,Nb)N nitrides. A new possibility to use the Z-phase for strengthening of 12%Cr steels has been identified,and the development of stable strong martensitic 12%Cr steels based on this concept is expected to allow the construction of 325 bar/ 650℃steam power plants all based on steel.  相似文献   

20.
Ferritic/martensitic (F/M) steels are considered for core applications and pressure vessels in Generation IV reactors as well as first walls and blankets for fusion reactors. There are significant scientific data on testing and industrial experience in making this class of alloys worldwide. This experience makes F/M steels an attractive candidate. In this article, tensile behavior, fracture toughness and impact property, and creep behavior of the F/M steels under neutron irradiations to high doses with a focus on high Cr content (8 to 12) are reviewed. Tensile properties are very sensitive to irradiation temperature. Increase in yield and tensile strength (hardening) is accompanied with a loss of ductility and starts at very low doses under irradiation. The degradation of mechanical properties is most pronounced at <0.3T M (T M is melting temperature) and up to 10 dpa (displacement per atom). Ferritic/martensitic steels exhibit a high fracture toughness after irradiation at all temperatures even below 673 K (400 °C), except when tested at room temperature after irradiations below 673 K (400 °C), which shows a significant reduction in fracture toughness. Creep studies showed that for the range of expected stresses in a reactor environment, the stress exponent is expected to be approximately one and the steady state creep rate in the absence of swelling is usually better than austenitic stainless steels both in terms of the creep rate and the temperature sensitivity of creep. In short, F/M steels show excellent promise for high dose applications in nuclear reactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号