首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A semipermissive growth condition was defined for a Schizosaccharomyces pombe strain carrying a thermosensitive allele of DNA polymerase delta (pol delta ts03). Under this condition, DNA polymerase delta is semidisabled and causes a delay in S-phase progression. Using a genetic strategy, we have isolated a panel of mutants that enter premature mitosis when DNA replication is incomplete but which are not defective for arrest in G2/M following DNA damage. We characterized the aya14 mutant, which enters premature mitosis when S phase is arrested by genetic or chemical means. However, this mutant is sensitive to neither UV nor gamma irradiation. Two genomic clones, rad26+ and cds1+, were found to suppress the hydroxyurea sensitivity of the aya14 mutant. Genetic analysis indicates that aya14 is a novel allele of the cell cycle checkpoint gene rad26+, which we have named rad26.a14. cds1+ is a suppressor which suppresses the S-phase feedback control defect of rad26.a14 when S phase is inhibited by either hydroxyurea or cdc22, but it does not suppress the defect when S phase is arrested by a mutant DNA polymerase. Analyses of rad26.a14 in a variety of cdc mutant backgrounds indicate that strains containing rad26.a14 bypass S-phase arrest but not G1 or late S/G2 arrest. A model of how Rad26 monitors S-phase progression to maintain the dependency of cell cycle events and coordinates with other rad/hus checkpoint gene products in responding to radiation damage is proposed.  相似文献   

2.
Eukaryotic cells arrest at the G2checkpoint in the presence of DNA damage or incompletely replicated DNA. This cell cycle checkpoint prevents the development and propagation of genomic instability. In the fission yeast, this process requires the action of a number of genes, including rad1(+) . We report here the identification of human and mouse cDNAs that exhibit extensive sequence homology to rad1(+) . The human gene, called HRAD1 , encodes a 282 amino acid protein that is 27% identical and 53% similar to yeast Rad1p. The human homologue maintains its sequence similarity over the full length of the protein, including the three proposed 3'-->5' exonuclease domains, and the leucine rich repeat region. The mouse gene, called MRAD1 , encodes a 280 amino acid protein that is 90% identical and 96% similar to HRAD1 at the amino acid level. Expression of HRAD1 in yeast rad1 mutants partially restores radiation resistance and G2checkpoint proficiency to these mutants. Evolutionaryconservation of structure between HRAD1 , MRAD1 , rad1(+), Saccharomyces cerevisiae RAD17 and the Ustilago maydis REC1 checkpoint genes suggests that the function of the encoded proteins is conserved as well. The ability of HRAD1 to partially complement yeast rad1 mutants suggests that this gene is required for G2checkpoint control in human cells.  相似文献   

3.
The presence in the cell genotype of srm1 and srm5 (cdc28-srm) mutations decreasing the spontaneous rho- mutability was shown to have no effect on the rates of spontaneous nuclear gene mutations and gamma-ray-induced mitotic recombination. Mutation cdc28-srm exerts a marked effect on cell sensitivity to the lethal action of ionizing radiation and on the appearance of homoplasmic segregants generated from heteroplasmic diploids. Additive interactions between mutations cdc28-srm and each of the rad6 and rad52 mutations were revealed by an analysis of double mutants with respect to their sensitivity to radiation. Mutation rad9 was epistatic with mutation cdc28-srm. These data agree with the idea that the p34CDC28 gene product is a target for the RAD9-dependent feedback control operating at the cell cycle checkpoints (checkpoint control) and ensuring an additional amount of time for premitotic repair of chromosomal DNA damage.  相似文献   

4.
Genetic instability in the Saccharomyces cerevisiae rad9 mutant correlates with failure to arrest the cell cycle in response to DNA damage. We quantitated the DNA damage-associated stimulation of directed translocations in RAD9+ and rad9 mutants. Directed translocations were generated by selecting for His+ prototrophs that result from homologous, mitotic recombination between two truncated his3 genes, GAL1::his3-delta5' and trp1::his3-delta3'::HOcs. Compared to RAD9+ strains, the rad9 mutant exhibits a 5-fold higher rate of spontaneous, mitotic recombination and a greater than 10-fold increase in the number of UV- and X-ray-stimulated His+ recombinants that contain translocations. The higher level of recombination in rad9 mutants correlated with the appearance of nonreciprocal translocations and additional karyotypic changes, indicating that genomic instability also occurred among non-his3 sequences. Both enhanced spontaneous recombination and DNA damage-associated recombination are dependent on RAD1, a gene involved in DNA excision repair. The hyperrecombinational phenotype of the rad9 mutant was correlated with a deficiency in cell cycle arrest at the G2-M checkpoint by demonstrating that if rad9 mutants were arrested in G2 before irradiation, the numbers both of UV- and gamma-ray-stimulated recombinants were reduced. The importance of G2 arrest in DNA damage-induced sister chromatid exchange (SCE) was evident by a 10-fold reduction in HO endonuclease-induced SCE and no detectable X-ray stimulation of SCE in a rad9 mutant. We suggest that one mechanism by which the RAD9-mediated G2-M checkpoint may reduce the frequency of DNA damage-induced translocations is by channeling the repair of double-strand breaks into SCE.  相似文献   

5.
Replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein present in all eukaryotes. In vitro studies have implicated RPA in simian virus 40 DNA synthesis and nucleotide excision repair, but little direct information is available about the in vivo roles of the protein. We report here the cloning of the largest subunit of RPA (rpa1+) from the fission yeast Schizosaccharomyces pombe. The rpa1+ gene is essential for viability and is expressed specifically at S phase of the cell cycle. Genetic analysis revealed that rpa1+ is the locus of the S. pombe radiation-sensitive mutation rad11. The rad11 allele exhibits pleiotropic effects consistent with an in vivo role for RPA in both DNA repair and DNA synthesis. The mutant is sensitive to both UV and ionizing radiation but is not defective in the DNA damage-dependent checkpoint, consistent with the hypothesis that RPA is part of the enzymatic machinery of DNA repair. When incubated in hydroxyurea, rad11 cells initially arrest with a 1C DNA content but then lose viability coincident with reentry into S phase, suggesting that DNA synthesis is aberrant under these conditions. A significant fraction of the mutant cells subsequently undergo inappropriate mitosis in the presence of hydroxyurea, indicating that RPA also plays a role in the checkpoint mechanism that monitors the completion of S phase. We propose that RPA is required to maintain the integrity of replication complexes when DNA replication is blocked. We further suggest that the rad11 mutation leads to the premature breakdown of such complexes, thereby preventing recovery from the hydroxyurea arrest and eliminating a signal recognized by the S-phase checkpoint mechanism.  相似文献   

6.
Checkpoints maintain the order of cell-cycle events. At G2/M, a checkpoint blocks mitosis in response to damaged or unreplicated DNA. There are significant differences in the checkpoint responses to damaged DNA and unreplicated DNA, although many of the same genes are involved in both responses. To identify new genes that function specifically in the DNA replication checkpoint pathway, we searched for high-copy suppressors of overproducer of Cdc25p (OPcdc25(+)), which lacks a DNA replication checkpoint. Two classes of suppressors were isolated. One class includes a new gene encoding a putative DEAD box helicase, suppressor of uncontrolled mitosis (sum3(+)). This gene negatively regulates the cell-cycle response to stress when overexpressed and restores the checkpoint response by a mechanism that is independent of Cdc2p tyrosine phosphorylation. The second class includes chk1(+) and the two Schizosaccharomyces pombe 14-3-3 genes, rad24(+) and rad25(+), which appear to suppress the checkpoint defect by inhibiting Cdc25p. We show that rad24Delta mutants are defective in the checkpoint response to the DNA replication inhibitor hydroxyurea at 37 degrees and that cds1Delta rad24Delta mutants, like cds1Delta chk1Delta mutants, are entirely checkpoint deficient at 29 degrees. These results suggest that chk1(+) and rad24(+) may function redundantly with cds1(+) in the checkpoint response to unreplicated DNA.  相似文献   

7.
Mutations in DNA repair/cell cycle checkpoint genes can lead to the development of cancer. The cloning of human homologs of yeast DNA repair/cell cycle checkpoint genes should yield candidates for human tumor suppressor genes as well as identifying potential targets for cancer therapy. The Schizosaccharomyces pombe genes rad17, rad1, and hus1 have been identified as playing roles in DNA repair and cell cycle checkpoint control pathways. We have cloned the cDNA for the human homolog of S. pombe rad17, RAD17, which localizes to chromosomal location 5q13 by fluorescence in situ hybridization and radiation hybrid mapping; the cDNA for the human homolog of S. pombe rad1, RAD1, which maps to 5p14-p13.2; and the cDNA for the human homolog of S. pombe hus1, HUS1, which maps to 7p13-p12. The human gene loci have previously been identified as regions containing tumor suppressor genes. In addition, we report the cloning of the cDNAs for genes related to S. pombe rad17, rad9, rad1, and hus1 from mouse, Caenorhabditis elegans, and Drosophila melanogaster. These include Rad17 and Rad9 from D. melanogaster, hpr-17 and hpr-1 from C. elegans, and RAD1 and HUS1 from mouse. The identification of homologs of the S. pombe rad checkpoint genes from mammals, arthropods, and nematodes indicates that this cell cycle checkpoint pathway is conserved throughout eukaryotes.  相似文献   

8.
A checkpoint responding to DNA damage in G2 results in a delay in the onset of mitosis through inhibition of p34cdc2 kinase activity via maintenance of inhibitory tyrosine phosphorylation. Genetic analyses of this checkpoint in fission yeast have identified single alleles of several genes, suggesting these screens are not yet saturating, and hence further genes await identification. To fully understand the complexity of this checkpoint it will be necessary to define all the genes involved. To this end we screened for new mutants defective in the ability to delay mitosis in the presence of DNA-damaging agents. Twenty-four mutants were isolated that were defective in UV-C and MMS-induced checkpoint delay. Amongst these mutants was an allele of cut5 that was also defective in the checkpoint responses. We show here, contrary to previous reports, that the UV-C induced checkpoint response is defective in cut5 mutants. Therefore, like all other checkpoint mutants, cut5 is required for G2 checkpoint arrest following DNA damage, regardless of the nature of the lesions involved.  相似文献   

9.
Checkpoints maintain the dependency relationships between discrete events in the cell cycle (for example, ensuring mitosis does not occur before DNA replication is complete). In Schizosaccharomyces pombe, mitotic checkpoints monitor DNA synthesis and the presence of DNA damage. The replication-dependent mitotic checkpoint prevents mitosis by inactivating p34cdc2 kinase. The mechanism by which the DNA damage checkpoint interacts with the mitotic machinery is distinct from that used by the replication checkpoint. The activity of p34cdc2 is controlled, in part, by the wee1 protein kinase, which inactivates cdc2 through phosphorylation at tyrosine-15 (ref. 7). Here we report normal mitotic arrest after DNA damage in S. pombe cells in which the wee1 gene is defective or missing. We suggest why these findings contradict a recent report which suggested that the wee1 gene product was required for DNA damage-dependent mitotic arrest.  相似文献   

10.
This study shows differences at the level of cell cycle arrest between the response of yeast cells to hydrogen peroxide and superoxide stress. These include both cell cycle phases at which arrest occurs and the involvement of the RAD9 checkpoint gene. Wild-type and rad9 cells were treated with hydrogen peroxide or the superoxide-generating agent menadione. rad9 mutants were up to 100-fold more sensitive to hydrogen peroxide but not affected in their resistance to menadione. Hydrogen peroxide caused G2-phase arrest, whereas menadione-treated cells arrested in G1. G2 arrest, induced by methyl 2-benzimidazil carbamate, increased cellular resistance to hydrogen peroxide but not to menadione. G1 arrest mediated by alpha-factor caused an increase in survival of wild-type cells treated with menadione but not with hydrogen peroxide. A cdc28 mutant arrested in G1 was significantly more sensitive to hydrogen peroxide than other cdc mutants arrested in later phases, including G2. rad9 cells have normal stationary phase resistance to hydrogen peroxide, the ability to adapt to it, glutathione content and induction of genes via the stress responsive element. Although rad9-dependent G2 arrest is important, other rad9-dependent factors may be involved in the resistance of cells to hydrogen peroxide since arrest in G2 did not make rad9 cells fully resistant.  相似文献   

11.
12.
13.
Twenty-eight site-directed mutations were introduced into the fission yeast gene (pcn1+) that encodes proliferating cell nuclear antigen (PCNA) and their in vivo effects analyzed in a strain with a null pcn1 background. Mutants defective in enhancing processivity of DNA polymerase delta have previously been identified. In this study, we assessed all of the mutants for their sensitivities to temperature, hydroxyurea, UV irradiation and methyl methanesulfonate (MMS), and specific mutants were also tested for sensitivity to gamma irradiation. One cold-sensitive allele, pcn1-3, was characterized in detail. This mutant had a recessive cold-sensitive cdc phenotype and showed sensitivity to hydroxyurea, UV, and gamma irradiation. At the non-permissive temperature pcn1-3 protein was able to form homotrimers in solution and showed increased stimulation of both synthetic activity and processivity of DNA polymerase delta relative to the wild-type Pcn1+ protein. Epistasis analyses indicated that pcn1-3 is defective in the repair pathway involving rad2+ but not defective in the classical nucleotide excision repair pathway involving rad13+. Furthermore, pcn1-3 is either synthetically or conditionally lethal in null checkpoint rad backgrounds and displays a mitotic catastrophe phenotype in these backgrounds. A model for how pcn1-3 defects may affect DNA repair and replication is presented.  相似文献   

14.
A role for the Mut L homologue-1 (MLH1) protein, a necessary component of DNA mismatch repair (MMR), in G2-M cell cycle checkpoint arrest after 6-thioguanine (6-TG) exposure was suggested previously. A potential role for MLH1 in G1 arrest and/or G1-S transition after damage was, however, not discounted. We report that MLH1-deficient human colon carcinoma (HCT116) cells showed decreased survival and a concomitant deficiency in G2-M cell cycle checkpoint arrest after ionizing radiation (IR) compared with genetically matched, MMR-corrected human colon carcinoma (HCT116 3-6) cells. Similar responses were noted between murine MLH1 knockout compared to wild-type primary embryonic fibroblasts. MMR-deficient HCT116 cells or embryonic fibroblasts from MLH1 knockout mice also demonstrated classic DNA damage tolerance responses after 6-TG exposure. Interestingly, an enhanced p53 protein induction response was observed in HCT116 3-6 (MLH1+) compared with HCT116 (MLH1-) cells after IR or 6-TG. Retroviral vector-mediated expression of the E6 protein did not, however, affect the enhanced G2-M cell cycle arrest observed in HCT116 3-6 compared with MLH1-deficient HCT116 cells. A role for MLH1 in G2-M cell cycle checkpoint control, without alteration in G1, after IR was also suggested by similar S-phase progression between irradiated MLH1-deficient and MLH1-proficient human or murine cells. Introduction of a nocodazole-induced G2-M block, which corrected the MLH1-mediated G2-M arrest deficiency in HCT116 cells, clearly demonstrated that HCT116 and HCT116 3-6 cells did not differ in G1 arrest or G1-S cell cycle transition after IR. Thus, our data indicate that MLH1 does not play a major role in G1 cell cycle transition or arrest. We also show that human MLH1 and MSH2 steady-state protein levels did not vary with damage or cell cycle changes caused by IR or 6-TG. MLH1-mediated G2-M cell cycle delay (caused by either MMR proofreading of DNA lesions or by a direct function of the MLH1 protein in cell cycle arrest) may be important for DNA damage detection and repair prior to chromosome segregation to eliminate carcinogenic lesions (possibly brought on by misrepair) in daughter cells.  相似文献   

15.
Eukaryotic cells respond to DNA damage and S phase replication blocks by arresting cell-cycle progression through the DNA structure checkpoint pathways. In Schizosaccharomyces pombe, the Chk1 kinase is essential for mitotic arrest and is phosphorylated after DNA damage. During S phase, the Cds1 kinase is activated in response to DNA damage and DNA replication blocks. The response of both Chk1 and Cds1 requires the six 'checkpoint Rad' proteins (Rad1, Rad3, Rad9, Rad17, Rad26 and Hus1). We demonstrate that DNA damage-dependent phosphorylation of Chk1 is also cell-cycle specific, occurring primarily in late S phase and G2, but not during M/G1 or early S phase. We have also isolated and characterized a temperature-sensitive allele of rad3. Rad3 functions differently depending on which checkpoint pathway is activated. Following DNA damage, rad3 is required to initiate but not maintain the Chk1 response. When DNA replication is inhibited, rad3 is required for both initiation and maintenance of the Cds1 response. We have identified a strong genetic interaction between rad3 and cds1, and biochemical evidence shows a physical interaction is possible between Rad3 and Cds1, and between Rad3 and Chk1 in vitro. Together, our results highlight the cell-cycle specificity of the DNA structure-dependent checkpoint response and identify distinct roles for Rad3 in the different checkpoint responses. Keywords: ATM/ATR/cell-cycle checkpoints/Chk1/Rad3  相似文献   

16.
Yeast Rad27 is a 5'-->3' exonuclease and a flap endo-nuclease. Apn1 is the major apurinic/apyrimidinic (AP) endonuclease in yeast. The rad27 deletion mutants are highly sensitive to methylmethane sulfonate (MMS). By examining the role of Rad27 in different modes of DNA excision repair, we wish to understand why the cytotoxic effect of MMS is dramatically enhanced in the absence of Rad27. Base excision repair (BER) of uracil-containing DNA was deficient in rad27 mutant extracts in that (i) the Apn1 activity was reduced, and (ii) after DNA incision by Apn1, hydrolysis of 1-5 nucleotides 3' to the baseless sugar phosphate was deficient. Thus, some AP sites may lead to unprocessed DNA strand breaks in rad27 mutant cells. The severe MMS sensitivity of rad27 mutants is not caused by a reduction of the Apn1 activity. Surprisingly, we found that Apn1 endonuclease sensitizes rad27 mutant cells to MMS. Deleting the APN1 gene largely restored the resistance of rad27 mutants to MMS. These results suggest that unprocessed DNA strand breaks at AP sites are mainly responsible for the MMS sensitivity of rad27 mutants. In contrast, nucleotide excision repair and BER of oxidative damage were not affected in rad27 mutant extracts, indicating that Rad27 is specifically required for BER of AP sites in DNA.  相似文献   

17.
In fission yeast, the rad3 gene product plays a critical role in sensing DNA structure defects and activating damage response pathways. A structural homologue of rad3 in humans (ATR) has been identified based on sequence similarity in the protein kinase domain. General information regarding ATR expression, protein kinase activity, and cellular localization is known, but its function in human cells remains undetermined. In the current study, the ATR protein was examined by gel filtration of protein extracts and was found to exist predominantly as part of a large protein complex. A kinase-inactivated form of the ATR gene was prepared by site-directed mutagenesis and was used in transfection experiments to probe the function of this complex. Introduction of this kinase-dead ATR into a normal fibroblast cell line, an ATM-deficient fibroblast line derived from a patient with ataxia-telangiectasia, or a p53 mutant cell line all resulted in significant losses in cell viability. Clones expressing the kinase-dead ATR displayed increased sensitivity to x-rays and UV and a loss of checkpoint control. We conclude that ATR functions as a critical part of a protein complex that mediates responses to ionizing and UV radiation in human cells. These responses include effects on cell viability and cell cycle checkpoint control.  相似文献   

18.
In vitro, the protein complex Chromatin Assembly Factor-I (CAF-I) from human or yeast cells deposits histones onto DNA templates after replication. In Saccharomyces cerevisiae, the CAC1, CAC2, and CAC3 genes encode the three CAF-I subunits. Deletion of any of the three CAC genes reduces telomeric gene silencing and confers an increase in sensitivity to killing by ultraviolet (UV) radiation. We used double and triple mutants involving cac1Delta and yeast repair gene mutations to show that deletion of the CAC1 gene increases the UV sensitivity of cells mutant in genes from each of the known DNA repair epistasis groups. For example, double mutants involving cac1Delta and excision repair gene deletions rad1Delta or rad14Delta showed increased UV sensitivity, as did double mutants involving cac1Delta and deletions of members of the RAD51 recombinational repair group. cac1Delta also increased the UV sensitivity of strains with defects in either the error-prone (rev3Delta) or error-free (pol30-46) branches of RAD6-mediated postreplicative DNA repair but did not substantially increase the sensitivity of strains carrying null mutations in the RAD6 or RAD18 genes. Deletion of CAC1 also increased the UV sensitivity and rate of UV-induced mutagenesis in rad5Delta mutants, as has been observed for mutants defective in error-free postreplicative repair. Together, these data suggest that CAF-I has a role in error-free postreplicative damage repair and may also have an auxiliary role in other repair mechanisms. Like the CAC genes, RAD6 is also required for gene silencing at telomeres. We find an increased loss of telomeric gene silencing in rad6Delta cac1Delta and rad18Delta cac1Delta double mutants, suggesting that CAF-I and multiple factors in the postreplicative repair pathway influence chromosome structure.  相似文献   

19.
The hus1+ gene is one of six fission yeast genes, termed the checkpoint rad genes, which are essential for both the S-M and DNA damage checkpoints. Classical genetics suggests that these genes are required for activation of the PI-3 kinase-related (PIK-R) protein, Rad3p. Using a dominant negative allele of hus1+, we have demonstrated a genetic interaction between hus1+ and another checkpoint rad gene, rad1+. Hus1p and Rad1p form a stable complex in wild-type fission yeast, and the formation of this complex is dependent on a third checkpoint rad gene, rad9+, suggesting that these three proteins may exist in a discrete complex in the absence of checkpoint activation. Hus1p is phosphorylated in response to DNA damage, and this requires rad3+ and each of the other checkpoint rad genes. Although there is no gene related to hus1+ in the Saccharomyces cerevisiae genome, we have identified closely related mouse and human genes, suggesting that aspects of the checkpoint control mechanism are conserved between fission yeast and higher eukaryotes.  相似文献   

20.
Checkpoints that respond to DNA structure changes were originally defined by the inability of yeast mutants to prevent mitosis following DNA damage or S-phase arrest. Genetic analysis has subsequently identified subpathways of the DNA structure checkpoints, including the reversible arrest of DNA synthesis. Here, we show that the Cds1 kinase is required to slow S phase in the presence of DNA-damaging agents. Cds1 is phosphorylated and activated by S-phase arrest and activated by DNA damage during S phase, but not during G1 or G2. Activation of Cds1 during S phase is dependent on all six checkpoint Rad proteins, and Cds1 interacts both genetically and physically with Rad26. Unlike its Saccharomyces cerevisiae counterpart Rad53, Cds1 is not required for the mitotic arrest checkpoints and, thus, defines an S-phase specific subpathway of the checkpoint response. We propose a model for the DNA structure checkpoints that offers a new perspective on the function of the DNA structure checkpoint proteins. This model suggests that an intrinsic mechanism linking S phase and mitosis may function independently of the known checkpoint proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号