首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca-(Na,Ce)-Bi-Ti系列高温压电陶瓷材料及其压电性能的研究   总被引:9,自引:0,他引:9  
本文开展了对CaBi4Ti4O15基料的置换和掺杂的研究,获得一个较好的Ca-(Na,Ce)-Bi-Ti材料系列,并在该材料系列的基础上再进行一元和多元掺杂,使它的d33值较CaBi4Ti4O15有较大程度的改善,其电阻率、电容和损耗的温度系数也均优于CaBi4Ti4O15,是一种较有开发潜力的高温压电陶瓷材料.  相似文献   

2.
本文开展了对CaBi4O15基料的置换和掺杂的研究,获得一个较好Ca-(Na,Ce)-Bi-Ti材料系列,并在该材料系列的基础上再进行一元和多元掺杂,使它的d33值较CaBi4Ti4O15有较大程度的改善,其电阻率、电容和损耗的温度系数也均优于CaBi4O15,是一种较有开发潜力的高温压电陶瓷材料。  相似文献   

3.
The phase-transition temperatures and piezoelectric properties of x(Bi(1/2)Na(1/2))TiO3-y(Bi(1/2)Li(1/2))TiO3-z(Bi(1/2)K(1/2))TiO3 [x + y + z = 1] (abbreviated as BNLKT100(y)-100(z)) ceramics were investigated. These ceramics were prepared using a conventional ceramic fabrication process. The phase-transition temperatures such as depolarization temperatures T(d), rhombohedraltetragonal phase transition temperature T(R-T), and dielectric-maximum temperature T(m) were determined using electrical measurements such as dielectric and piezoelectric properties. The X-ray powder diffraction patterns of BNLKT100(y)-100(z)) show the morphotropic phase boundary (MPB) between rhombohedral and tetragonal at approximately z = 0.20, and the piezoelectric properties show the maximum at the MPB. The electromechanical coupling factor k(33), piezoelectric constant d(33) and T(d) of BNLKT4-20 and BNLKT8-20 were 0.603, 176 pC/N, and 171 degrees C, and 0.590, 190 pC/N, and 115 degrees C, respectively. In addition, the relationship between d33 and Td of tetragonal side and rhombohedral side for BNLKT4-100z and BNLKT8-100z were presented. Considering both high Td and high d(33), the tetragonal side of BNLKT4-100z is thought to be the superior composition. The d(33) and T(d) of BNLKT4-28 were 135 pC/N and 218 degrees C, respectively. Moreover, this study revealed that the variation of T(d) is related to the variation of lattice distortion such as rhombohedrality 90-alpha and tetragonality c/a.  相似文献   

4.
综述了利用冶金炉渣制备微晶玻璃的方法;介绍了更为简便的粉末成型直接烧结法的最新进展;综述了基础玻璃的组成、热处理制度对炉渣微晶玻璃性能的影响;展望了炉渣微晶玻璃的发展前景。  相似文献   

5.
采用固相合成法制备了(1-x)SrCaBi_4Ti_5O_(18-x)BiMeO_3(SCBT-xBMe,Me=Ga,Mn;0≤x≤0.02)铋层状压电陶瓷,研究了BiMeO_3掺杂对SrCaBi_4Ti_5O_(18)系陶瓷微观结构及电性能的影响。结果表明BiMeO_3掺杂并未改变SCBT陶瓷的晶体结构,所有样品均为单一的铋层状结构陶瓷;适量引入BiMeO_3能促使SCBT的晶粒长大且趋于均匀,并有助于SCBT电性能的优化。当BiMeO_3掺杂量为0.005(Me=Ga)和0.02(Me=Mn)时,材料的压电常数d33分别为18pC/N和20pC/N,同时材料具有高的居里温度(Tc=550℃)和低的介电损耗(tanδ0.15%)。此外,SCBTxBMe材料具有良好的压电稳定性,适合于制备高温高频压电器件。  相似文献   

6.
采用顶部籽晶法生长了一系列不同组分的高居里温度铌镥酸铅-钛酸铅[(1-x)Pb(Lu1/2Nb1/2)O3-xPbTiO3 (PLN-xPT)]铁电晶体。该晶体在三方相区域表现出典型的介电弛豫特性, 不同组分的晶体表现出了较高的居里温度; 基于介电和结构测试结果, 得到了该体系的低温二元体系相图, 在相图中存在一个准同型相界区域(MPB), 其组分位于x = 0.49~0.51; 利用偏光显微镜分析晶体电畴结构得到和X射线粉末衍射测试结果吻合的相结构; 电学性能测试结果表明不同组分的晶体性能差异较大。组分位于MPB附近的晶体表现出优异的压电性能, 如x = 0.49时, 居里温度Tc = 360℃, 压电常数d33 > 1600 pC/N。处于MPB附近的晶体存在较大的矫顽Ec >10kV/cm, 一些组分晶体的三方–四方相变温度TRT > 200℃。结果表明高的居里温度及优异的压电性能使二元铌镥酸铅-钛酸铅晶体具有更大的温度应用范围及更广阔的应用前景。  相似文献   

7.
在堇青石化学计量组分和非堇青石化学计量组分中分别添加B2O3, 通过玻璃粉末烧结法制备玻璃陶瓷,并研究了玻璃陶瓷的性能, 包括非等温析晶动力学、热学、力学和介电性能。本研究使用非堇青石化学计量组分制备了α-堇青石基玻璃陶瓷, 并加入B2O3促进α-堇青石析出, 提高MgO-Al2O3-SiO2玻璃的结晶能力。玻璃成分中过量的MgO和SiO2不会影响玻璃的析晶能力, 但会影响析晶的类型; 增加B2O3含量可以制备低热膨胀系数的α-堇青石基玻璃陶瓷, 但会降低玻璃陶瓷的软化点。此外, 增加B2O3含量还可以提高玻璃陶瓷的致密性和强度。α-堇青石基玻璃陶瓷的最大抗弯强度、弹性模量、断裂韧性和体积密度分别为(42.4±3.0) MPa、(34.0±2.9) GPa、(0.7±0.15) MPa·m1/2和1.53 g/cm3。制备的α-堇青石基玻璃陶瓷表现出良好的介电性能(介电常数低至3.5), 热膨胀系数低至4.22×10-6 K-1。  相似文献   

8.
Dense glass-ceramics for low firing temperature substrates were prepared by the addition of CeO2 flux to a glass of the MgO-Al2O3-SiO2 system. The glass powders were fabricated by melting at 1500°C and ball milling. Glass powder compacts prepared by dry pressing were heated at 800–1000°C for 0.5–4 h and sintered at 900–1000°C for 3 h. The crystallization behaviour and sinterability of the glass powder compacts were analysed by thermal and thermomechanical techniques. X-ray diffractometry and scanning electron microscopy. The addition of CeO2 prevents the formation of -cordierite phase in the glass-ceramics and improves the formation of -cordierite phase. The activation energy of the glass containing CeO2 for crystallization was lower than that of the CeO2-free glass. Therefore, crystallization properties were enhanced. Because the crystallization onset temperature increased and the softening temperature decreased on the addition of CeO2, the sinterability increased and dense glass-ceramics were fabricated below 1000°C. The properties of the glass-ceramics containing CeO2 appeared to be correct for low firing temperature substrates.  相似文献   

9.
PMN-PT单晶与陶瓷在性能及相变方面的特点   总被引:5,自引:0,他引:5  
着重介绍了用Bridgman方法生长的(1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3(PMN-PT)固溶体单昌在介电,压电、热释电性能及相应方面的一些特点;①异常高的电常数d33(高达3000pC/N以上),耦合系数kg(在0.6以上),k33(达0.90),高的介电常数ε(高达500甚至更高),低的Qm值(约60),热释电系数也较高。②强烈的各向异性。③随着PT含量的增加,系统的弛豫行为逐渐减弱,在x=0.33时,材料在室温下成为正常铁电体,但PE-FE相变并非正常铁电相变,表现在T>Tm时,ε-T关系不遵守居里-包斯定律,而是遵守Smolenskii的关系。该相变也明显地与弥散相变不同,这种行为可用无场的观点加以解释。  相似文献   

10.
Property measurements are reported for Pb(Mg1/3Nb2/3)03-PbTiO3 (PMN-PT) single crystals grown along (001) by a seeded-melt method. Chemical segregation occurs during crystal growth, leading to property changes along the growth direction. Variations in dielectric, piezoelectric, and elastic properties were evaluated for specimens selected from the crystals. Room-temperature data are correlated with Tc and composition that ranged from 27 to 32% PT, i.e., in the vicinity of the morphotropic phase boundary (MPB). While there was little change in the high electromechanical coupling factor k33 (0.87-0.92), both the piezoelectric charge coefficient d33 (1100-1800 pC/N) and the free dielectric constant K3 (4400-7000) were found to vary significantly with position. Increases in d33 and KT33 were relatively offsetting in that the ratio yielded a relatively stable piezoelectric voltage coefficient g33 (27-31 x 10(-3) Vm/N). Values are also reported for the elastic compliance (3.3-6.3 x 10(-11) m2/N) determined from resonance measurements. Enhancements in d33 and K(T)33 were associated with lattice softening (increasing sE33) as the composition approached the MPB. Details are reported for the piezoelectric, dielectric, and elastic properties as a function of growth direction, Tc, and composition. The results are useful for an understanding of properties in PMN-PT crystals and for the design of piezoelectric devices.  相似文献   

11.
压电陶瓷多层膜的低温共烧特性及压电性能密切依赖于其成分。采用调节压电材料成分,以0.90Pb(Zr0.48Ti0.52)O3-0.05Pb(Mn1/3Sb2/3)O3-0.05Pb(Zn1/3Nb2/3)O3四元体系为研究对象,同时添加烧结助剂CuO来实现多层膜的低温烧结。对多层膜的流延、排胶、烧结、极化等工艺进行探索以优化工艺参数,最终获得850℃烧结温度下的高致密度多层压电陶瓷。压电性能的测试表明三层结构的压电多层膜陶瓷表观d33达873pC/N,远高于同成分单层陶瓷306 pC/N的d33值。采用多普勒激光测振仪进行扫频实验,测定了多层陶瓷纵向振动速度的频谱,确定了基于该多层膜压电振子的最优谐振频率。  相似文献   

12.
Sodium potassium niobate, (Na(0.5)K(0.5))NbO(3), fine powder has been successfully synthesized at the low temperature of 550 degrees C through a modified solid-state reaction method, in which urea [CO(NH(2))(2)] plays an important role. High-density (Na(0.5)K(0.5))NbO(3) ceramics could be obtained by conventional sintering of the synthesized (Na(0.5)K(0.5))NbO(3) fine powder with the addition of 0.03 mol% Co(3)O(4) as a sintering additive. The crystal structure, microstructure, and dielectric and piezoelectric properties were characterized. The (Na(0.5)K(0.5))NbO(3) ceramic showed a comparatively saturated P-E hysteresis loop. The (Na(0.5)K(0.5))NbO(3) ceramic also displayed piezoelectricity with a piezoelectric constant d(33) of 126 pC/N and a planar electromechanical coupling factor k(p) of 33%.  相似文献   

13.
中温烧结PZN-PZT系陶瓷的压电性能研究   总被引:8,自引:0,他引:8  
在多层压电器件的研制过程中,为实现压电陶瓷和Ag/Pd内电极的共烧结,本文对中温1100~1140℃范围烧成的PZN-PZ-PT系压电陶瓷的电性能进行了研究,结果表明,保温时间对该组成的压电介电性能有重要的影响,随保温时间的延长,d33从420×10-12C/N增加到 560×10-12C/N, ε33从 2180增加到 2900。  相似文献   

14.
铅基弛豫型铁电体的峰值介电常数和压电性能在退火后有较大提高.在PMN-PT陶瓷中,k_p由58%提高到66%,峰值介电常数由30900提高到37200,d_(33)达到530pC/N.在PZN-PT-BT陶瓷中,k_p由35%提高到51%,峰值介电常数km由11400提高到29000,d_(33)由347PC/N提高到624pC/N.这种改善可能与晶界玻璃相的消除以及畴壁运动等因素有关  相似文献   

15.
The perovskite solid solution system (1-x)BiScO3-(x)PbTiO3 represents an interesting new family of high-temperature piezoelectric materials. Compositions near the morphotropic phase boundary (x approximately 0.64) have been reported to have high Curie temperatures (Tc > 450 degrees C) and good piezoelectric coefficients (d33 approximately 460 pC/N). In this work, manganese additions were used to improve the high-temperature electrical resistivity and RC time constant of compositions near the morphotropic phase boundary. The addition of manganese was found to shift Tc to slightly lower temperatures (442 degrees C and 456 degrees C for x = 0.64 and x = 0.66, respectively). The piezoelectric activities of the modified materials were found to be reduced slightly due to the hardening effect of manganese; however, the temperature stability and resistivity of the modified materials were significantly enhanced. In this paper we present, for the first time, a complete set of materials constants, including the elastic (sij, cij), piezoelectric (dij, eij, gij, hij), dielectric (epsilonij, betaij), and electromechanical (kij) coefficients and compare them to both unmodified 0.36BiScO3-0.64PbTiO3 and PZT5A ceramics.  相似文献   

16.
Dielectric and piezoelectric properties of perovskite materials including La modified Pb(Zr, Ti)O3 (PZT's), (Ba, Sr)TiO3 (BST) polycrystalline ceramics and Pb(Zn1/3 Nb2/3)O3-PbTiO3 (PZN-PT) single crystals were investigated for capacitor and actuator applications at cryogenic temperatures. PZTs were compositionally engineered to have decreased Curie temperatures (Tc) by La and Sn doping in order to compensate for the loss of extrinsic contributions to piezoelectricity at cryogenic temperatures. Enhanced extrinsic contributions resulted in piezoelectric coefficients (d33) as high as 250 pC/N at 30 K, superior to that of conventional DOD Type PZT's (d33~100 pC/N). This property enhancement was associated with retuning to the MPB at cryogenic temperatures. 5/95 BST with a dielectric maximum at 57 K was investigated to obtain high electrostrictive properties or E-field induced piezoelectricity. Coupling coefficients (k31) 25% comparable to those of the cryogenic PLZT piezoelectrics were observed at d.c. bias of 1.5 kV/cm and 50 K. Though significantly lower than the room temperature values, PZN-PT rhombohedral single crystals exhibited d33> 500 pC/N at 30 K.  相似文献   

17.
以CaO-Al2O3-SiO2玻璃为基体,以石墨为发泡剂,制备硅灰石基泡沫微晶玻璃,研究了玻璃中引入ZnO和增加CaO含量对析晶与发泡的影响.结果表明,ZnO可降低发泡过程中假硅灰石晶相的析出量,促进玻璃粉与发泡剂混合物的烧结,降低发泡剂在较低温度下的损耗.提高CaO含量,样品结晶度增大,相同温度下玻璃的粘度增加,发泡效率降低.原料中ZnO加入量6wt%、CaO含量为18wt%的CaO-Al2O3-SiO2玻璃粉,较低温度下烧结充分,发泡剂损耗相对较少,在1000℃的发泡温度下可获得气孔率高的泡沫微晶玻璃.  相似文献   

18.
Phase relations, dielectric and piezoelectric properties are reported for the ternary system 98%[(1 - x) (Na(0.5)K(0.5)NbO(3))-x(LiTaO(3))]-2%[BiScO(3)] for compositions x ≤ 10 mol% LiTaO(3). The phase content at room-temperature changed from mixed phase, monoclinic + tetragonal, for unmodified 98%(Na(0.5)K(0.5)NbO(3))-2%(BiScO(3)), to tetragonal phase for compositions >2 mol% LiTaO(3). Curie peaks at 360 to 370°C were observed for all compositions, but peaks became diffuse at x ≥ 3 mol%, and two dielectric peaks, at 370 and 470°C, were observed for 5 mol% LiTaO(3). Phase segregation, and finite size affects associated with the core-shell structure, account for the occurrence of two dielectric peaks in 5 mol% LiTaO(3), and diffuse dielectric behavior. The value of d(33) piezoelectric charge coefficient increased from ~160 pC/N for 0 mol% LiTaO(3) to 205 to 214 pC/N for 1 to 2 mol% LiTaO3 solid solutions, before falling sharply at 3 mol% LiTaO(3). TEM-EDX analysis revealed core-shell grain structures with segregation of Bi, Sc, and Ta in the outer ~100-nm shell of the 5 mol% LT sample.  相似文献   

19.
Transverse piezoelectric property of 0.91Pb(Zn(1/3)Nb(2/3))O(3)-0.09PbTiO(3) (PZN-9%PT) single crystal poled along [011] direction under different fields have been investigated, the poling field giving the best property was between 350 and 650 V/mm at room temperature. Full tensorial elastic, dielectric, and piezoelectric properties of PZN-9%PT single crystal poled along the [011] direction under 500 V/mm have been determined by resonance and ultrasonic methods. It was found that the electromechanical coupling coefficients k(32) and k(33) can reach 0.90 and 0.89 and the piezoelectric coefficients d(32) and d(15) are -1705 and 2012 pC/N, respectively. This complete set of physical properties can provide convenience for piezoelectric device fabrication and domain engineering studies.  相似文献   

20.
The phase-transition temperatures and piezoelectric properties of x(Bi1/2Na1/2)TiO3-y(Bi1/2Li1/2)TiO3-z(Bi1/2K1/2)TiO3 [x + y + z = 1] (abbreviated as BNLKT100y-100z) ceramics were investigated. These ceramics were prepared using a conventional ceramic fabrication process. The phase-transition temperatures such as depolarization temperatures Td, rhombohedral-tetragonal phase transition temperature TR-T, and dielectric-maximum temperature Tm were determined using electrical measurements such as dielectric and piezoelectric properties. The X-ray powder diffraction patterns of BNLKT100y-100z show the morphotropic phase boundary (MPB) between rhombohedral and tetragonal at approximately z = 0.20, and the piezoelectric properties show the maximum at the MPB. The electromechanical coupling factor &33, piezoelectric constant d33 and Td of BNLKT4-20 and BNLKT8-20 were 0.603, 176 pC/N, and 171degC, and 0.590, 190 pC/N, and 115degC, respectively. In addition, the relationship between d33 and Td of tetragonal side and rhombohedral side for BNLKT4-100z and BNLKT8-100z were presented. Considering both high Td and high d33, the tetragonal side of BNLKT4-100z is thought to be the superior composition. The d33 and Td of BNLKT4-28 were 135 pC/N and 218degC, respectively. Moreover, this study revealed that the variation of Td is related to the variation of lattice distortion such as rhombohedrality 90-alpha and tetragonality c/a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号