首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Edible films have been extensively studied with the aim to find an adequate formulation that allows improving food quality and safety. Both wettability and water-barrier properties are two important parameters that must be considered for an adequate design of edible coatings. The aim of this work was to measure the contact-angle of film solution based on carboxymethylcellulose (CMC) with murta leaf (Ugni molinae Turcz) extract to estimate the wettability on apple and quince skins and measure the water vapor permeability (WVP) of films. The results show that murta leaves extract did not affect the contact angle and wettability measured on the fruits surface. However, differences were obtained between apple and quince skin which can be explained because the dispersive component of surface tension of quince skin was lower than apple skin. The WVP was not affected by murta leaves extract incorporation. This allows concluding that the film properties assayed were not modified by the incorporation of murta leaves extract ecotype 14-4.  相似文献   

2.
Jong-Whan Rhim 《LWT》2004,37(3):323-330
Properties of sodium alginate films were modified using two different methods of CaCl2 treatment, i.e. the direct addition of CaCl2 into film making solution (mixing films) and the immersion of alginate films into CaCl2 solutions (immersion films), and their treatment effects on tensile strength (TS), percentage elongation at break (E), water vapor permeability (WVP), and water solubility (WS) of the films were investigated. TS and E of the mixing films were not changed considerably, but those of the immersion films changed considerably with significant (P<0.05) increase in TS and decrease in E. WVP of the immersion films decreased significantly (P<0.05), but that of the mixing films did not decreased. Water resistance measured by WS was not improved with the mixing films, but the alginate films became water resistant when they treated by immersing in higher than 2 g/100 ml CaCl2 solutions. Water adsorption by the films also decreased in the immersion films. Swelling ratio (SR) of the immersion film decreased with temperature without affecting WS of the films.  相似文献   

3.
Edible films were prepared using sodium caseinate (6–8 g/100 g) and stearic acid (0–2 g/100 g). Effects of the ratio of stearic acid and sodium caseinate to water on the water vapor permeability (WVP) and mechanical properties of the prepared films were evaluated. Film-forming emulsions were also tested for rheological properties and surface tension. Changes in the ratios of sodium caseinate and stearic acid to water had significant effects on WVP (p < 0.05) and surface tension (p < 0.01). Higher values of consistency coefficient and elastic modulus were obtained in the presence of higher stearic acid. In addition, increase in stearic acid content increased the rate of water loss and gain of elastic modulus at the early stage of drying and resulted in production of less flexible film. The resultant edible film prepared with 6 g/100 g sodium caseinate and 2 g/100 g stearic acid showed the lowest WVP of 1.368 (g mm/m2 h kPa).  相似文献   

4.
Sugars are natural plasticizers for food biopolymers and zein is the most important protein of corn. In this research, sugars (fructose, galactose and glucose) were used as plasticizers and the water vapor permeability (WVP), contact angle and microstructure of the zein films were studied. The pure zein film had high WVP and adding of sugars to 0.7 g/g zein caused to decrease of WVP. Films containing galactose had the lowest WVP.All samples had the lowest contact angle with ethanol and the highest contact angle with water. The zein films containing galactose had the highest water contact angle within the plasticized films. The pure zein films and the films containing fructose had higher critical surface tension of wetting (γc) than the films containing glucose and galactose. Adding sugar plasticizer to zein films increased the surface tension of zein films. In the unplasticized zein films, loose structures with a lot of cavities and voids were observed. The films plasticized by fructose had smooth surface and plasticizer particles distributed throughout of the films.  相似文献   

5.
Jong-Whan Rhim  Seok-In Hong 《LWT》2009,42(2):612-172
PLA-based composite films with different types of nanoclays, such as Cloisite Na+, Cloisite 30B and Cloisite 20A, were prepared using a solvent casting method and their tensile, water vapor barrier and antimicrobial properties were tested. Tensile strength (TS), elongation at break (E), and water vapor permeability (WVP) of control PLA film were 50.45 ± 0.75 MPa, 3.0 ± 0.1%, and 1.8 × 10−11 g m/m2 s Pa, respectively. TS and E of nanocomposite films prepared with 5 g of clay/100 g of PLA decreased 10-20% and 11-17%, respectively, depending on the clays used. On the contrary, WVP of the nanocomposite films decreased 6-33% through nanoclay compounding. Among the clay types used, Cloisite 20A was the most effective in improving the water vapor barrier property while sacrificing tensile properties the least. The effect of clay concentration tested using Cloisite 20A showed a significant decrease in TS and WVP, with increases in clay content. Among the PLA/clay composite films tested, only PLA/Cloisite 30B composite film showed a bacteriostatic function against Listeria monocytogenes.  相似文献   

6.
In this study, the physical, thermal and mechanical properties of a novel edible film based on psyllium hydrocolloid (PH) were investigated. PH films were prepared by incorporation of three levels of glycerol (15%, 25%, and 35% w/w). As glycerol concentration increased, water vapor permeability (WVP), percent of elongation (E%) and water solubility of PH films increased whilst, tensile strength (TS), surface hydrophobicity and glass transition point (Tg) decreased significantly. At the level of 15% (W/W) of glycerol, PH films showed the lowest WVP values (1.16 × 10−10 g H2O m−2 s−1 MPa−1), E% (24.57%) and water solubility (47.69%) and the highest values for TS (14.31 MPa), water contact angle (84.47°) and Tg (175.2 °C). By increasing glycerol concentration, PH films became slightly greenish and yellowish in color but still transparent in appearance. This study revealed that the psyllium hydrocolloid had a good potential to be used in producing edible films with interesting specifications.  相似文献   

7.
Jong-Whan Rhim  Jun Ho Lee 《LWT》2007,40(2):232-238
Polylactic acid (PLA)-coated soy protein isolate (SPI) films were prepared by dipping SPI film into PLA solution. The effects of coating on improvements in mechanical and water barrier properties of the film were tested by measuring selected film properties such as tensile strength (TS), elongation at break (E), water vapor permeability (WVP), and water solubility (WS). TS of SPI films increased from 2.8±0.3 up to 17.4±2.1 MPa, depending on the PLA concentration of the coating solution, without sacrificing the film's extensibility. In contrast, the extensibility of SPI film coated with solution containing more than 2 g PLA/100 ml solvent, increased. WVP of PLA-coated SPI films decreased from 20 to 60 fold, depending on the concentration of PLA coating solution. Water resistance of SPI films was greatly improved as demonstrated by the dramatic decrease in WS for PLA-coated films. The improvement in water barrier properties was mainly attributed to the hydrophobicity of PLA.  相似文献   

8.
Characterization of antimicrobial polylactic acid based films   总被引:1,自引:0,他引:1  
Olive leaf extract (OLE) (Olea europaea L.), which has antimicrobial effect on many food pathogens, was incorporated as antimicrobial agent into polylactic acid (PLA) films. Antimicrobial activities of films were tested against Staphylococcus aureus. Increasing amount of the OLE in the film discs from 0.9 mg to 5.4 mg caused a significant increase in inhibitory zones from 9.10 mm to 16.20 mm, respectively. Moreover, incorporation of OLE and/or increasing the amount in the film formulation significantly enhanced the water vapor permeability (WVP). The water solubility and the degradation rates of films increased up to 19.3% and 22.4%, respectively. Thus, OLE incorporated PLA films have a prospectively potential in antimicrobial food packaging to reduce post-process growth of S. aureus with improved properties.  相似文献   

9.
Gelatin films derived from beef, pork and fish sources were manufactured by twin-screw, co-rotating extrusion. The effect of extrusion processing parameters, namely; screw speed (100–400 rpm) and temperature (90, 90, 90, 90 °C and 90, 120, 90, 90 °C) on the mechanical and barrier properties of gelatin films were studied. Increasing screw speed up to 300 rpm improved (P < 0.05) tensile strength (TS) and reduced (non-significantly) water vapour permeability (WVP) values for all manufactured gelatin films. However, the WVP of various gelatin film types was reduced (P < 0.05) when a screw speed of 400 rpm was employed. Increasing the speed of extrusion promoted (P < 0.05) increased solubility of films in water. Manufacture of films using a higher temperature profile resulted in films possessing higher puncture strengths (PS), increased water barrier properties with higher water solubility.  相似文献   

10.
Starch (S)–flaxseed meal (FM) biofilms were prepared from potato and maize starch by incorporating FM up to 15% (dry solid basis) and using glycerol as plasticizer. The dynamic mechanical properties, tensile properties and water vapor permeability (WVP) of these films were measured. The storage modulus of both the starch (control) and starch–FM films decreased as temperature increased. Tan δ increased initially in all the films with increase in temperature until a peak value was reached which allowed the determination of glass transition temperature (Tg). Both tensile strength and Young’s modulus of the starch–FM films increased with increase in the FM content. The WVP of the potato starch–FM films first increased to 2.261 (×105 g m−2 h−1 Pa−1) when FM content increased to 5% and decreased down to 1.832 (×105 g m−2 h−1 Pa−1) with further increase in the FM content to 15%. While the WVP values of the cornstarch and corn starch–FM films were not significantly (p > 0.05) different. The incorporation of FM increased the tensile strength, decreased the % elongation at break and increased the Tg.  相似文献   

11.
Sílvia Maria Martelli 《LWT》2006,39(3):292-301
Biodegradable films from many protein sources have in recent decades attracted a lot of attention for their potential use in food protection because they have several advantages over synthetic films, including those related to the environment. The effects of type and concentration of plasticizers on microstructure, sorption isotherms and water vapor permeability (WVP) of films obtained from chicken feather keratin (CFK) were investigated. Keratins were extracted with an aqueous solutions of urea, 2-mercaptoethanol and surfactant. The protein was dosed and the maximum concentration achieved was 12 g/100 ml. The protein concentration in the keratin film solution was standardized at 7 g/100 ml for the preparation of the films by casting. The results showed that increasing the plasticizer concentration caused a decrease in barrier properties and favored water adsorption by the polymeric network, increasing the moisture content of the films. The monolayer moisture content was 8.76 times higher for films made with glycerol than films made without plasticizer and 12 times higher than films plasticized with PEG 4000. The same behavior was observed for the water solubility coefficient, which increased with increasing plasticizer concentration.  相似文献   

12.
Jang Woo Park  Seung Yong Cho 《LWT》2008,41(4):692-700
Gelatin-based edible films were produced by extruding hot melt of gelatin-based resins through a die with slot orifice and followed by heat-pressed method. The resins were plasticized with glycerol, sorbitol and the mixture of glycerol and sorbitol (MGS). The effect of type of plasticizer on extruded and heat-pressed (EHP) film-forming capacity was studied, and the mechanical and water barrier properties of resulting EHP gelatin films were compared with those of gelatin films prepared by solution casting method. Stretchable films were formed when glycerol or MGS were used as plasticizer, whereas resins plasticized with sorbitol were extruded in non-stretchable sheets. Glycerol plasticized gelatin film showed the highest flexibility and transparency among the EHP films tested. Tensile strength (TS), elongation (E) and water vapor permeability (WVP) of glycerol plasticized EHP gelatin films were 17.3 MPa, 215.9% and 2.46 ng m/m2 s Pa, respectively, and EHP gelatin films had higher E values, lower TS values and higher WVP values compared to the glycerol plasticized cast gelatin films.  相似文献   

13.
Glycerol-plasticized gelatin edible films with a new kind of dialdehyde polysaccharide, dialdehyde carboxymethyl cellulose (DCMC) as crosslinking agent are successful prepared using casting techniques. The mechanical properties, thermal stability, light barrier properties, swelling behavior as well as water vapor permeability (WVP) of the gelatin-DCMC films are investigated. The results indicate that the addition of DCMC causes tensile strength (TS) and thermal stability to increase and elongation at break (EB) to decrease, suggesting the occurrence of crosslinking between gelatin and DCMC. The light barrier measurements present high values of transparency at 280 nm and low values of transparency at 600 nm of the gelatin-DCMC films, indicating that gelatin-DCMC films are very transparent (lower in transparency value) while they have excellent barrier properties against UV light. Moreover, the values of transparency at 280 nm increase with the increased DCMC and glycerol content, suggesting the potential preventive effect of gelatin-DCMC films on the retardation of product oxidation induced by UV light. Furthermore, the addition of DCMC can greatly decrease the water vapor permeability (WVP) and equilibrium swelling ratio (ESR) down to values about 1.5 × 10−10 g m/m2 s Pa and 150%, revealing the potential of DCMC in reducing the water sensitivity of gelatin-based films. In common for hygroscopic plasticizer in edible films, the addition of glycerol gives increase of EB and WVP and decrease of thermal stabilities and ESR of the gelatin-DCMC films.  相似文献   

14.
Novel edible composite films were prepared from pistachio globulin protein (PGP), saturated fatty acids, and an emulsifier using the emulsification technique. The water vapor permeability (WVP) of the emulsified films was reduced by approximately 37–43% by fatty acid addition. The effect of fatty acid on the oxygen permeability (OP) of PGP films was indirectly determined as the oil peroxide value. The OPs of the emulsified films were lower than those of a PGP film without fatty acid, but the differences were not significant (P < 0.05). The mechanical properties of PGP films were also affected by fatty acid addition; the ultimate tensile strength (UTS) was diminished, and elongation at breaking (E) decreased considerably (35–70%). Furthermore, the incorporation of fatty acid increased the opacity of the films. Finally, differential scanning calorimetry showed that the glass transition temperature (Tg) of the PGP film was ∼127 °C and was not considerably affected by fatty acid addition.  相似文献   

15.
The water sorption, water barrier properties and mechanical behaviour of pullulan (P) and sodium caseinate (SC), as well as their blend and bilayer films plasticized with sorbitol (25% dry basis), were investigated as a function of weight polymer ratio, water content and beeswax lamination. Very similar moisture sorption isotherms were obtained for blend and bilayer films with P/SC weight ratio of 1/3 and 3/1. Neither the type of film (blend or bilayer) nor the different P/SC ratio affected significantly (P > 0.05) the water vapour permeability (WVP) of the films. A mixture-process variable experimental design was applied to evaluate the effect of the proportion of the two polymers in relation with the relative humidity (RH, 53% and 75%) on the mechanical properties of the films. Increasing the P/SC ratio decreased the Young’s modulus (E), the tensile strength (σmax) and increased the % elongation at break (% EB), suggesting that P imparts flexibility and SC stiffness to the composite films. With moisture content increase from 5% to 8% most of the films exhibited an increase in E and σmax, whereas a sharp decline in both parameters and an increase in % EB were observed above this moisture level. The brittle to ductile transition of P coincided with its glass to rubber transition, whereas SC exhibited a ductile behaviour within the glassy state. The tensile characteristics of bilayer films at moisture content greater than 8% were dominated by the component present in higher proportion, while films made with the biopolymer blends showed mechanical behaviour closer to that of plain P films. Beeswax lamination of plain, bilayer and blend films resulted in a drastic decrease in water vapour permeance, whereas its effect on E and σmax and in % EB was related to the mechanical properties of the hydrocolloid layers used and varied according to the moisture content of the films.  相似文献   

16.
Properties of film from cuttlefish (Sepia pharaonis) ventral skin gelatin with different degree of hydrolysis (DH: 0.40, 0.80 and 1.20%) added with glycerol as plasticizer at various levels (10, 15 and 20%, based on protein) were investigated. Films prepared from gelatin with all DH had the lower tensile strength (TS) and elongation at break (EAB) but higher water vapor permeability (WVP), compared with the control film (without hydrolysis) (p < 0.05). At the same glycerol content, both TS and EAB decreased, while WVP increased (p < 0.05) with increasing %DH. At the same DH, TS generally decreased as glycerol content increased (p < 0.05), however glycerol content had no effect on EAB when gelatins with 0.80 and 1.20% DH were used (p > 0.05). DH and glycerol content had no marked impact on color and the difference in color (ΔE) of resulting films. Electrophoretic study revealed that degradation of gelatin and their corresponding films was more pronounced with increased %DH, resulting in the lower mechanical properties of films. Based on FTIR spectra, with the increasing %DH as well as glycerol content, higher amplitudes for amide-A and amide-B peaks were observed, compared with film from gelatin without hydrolysis (control film) due to the increased –NH2 group caused by hydrolysis and the lower interaction of –NH2 group in the presence of higher glycerol. Thermo-gravimetric analysis indicated that film prepared from gelatin with 1.20% DH exhibited the higher heat susceptibility and weight loss in the temperature range of 50–600 °C, compared with control film. Thus, both chain length of gelatin and glycerol content directly affected the properties of cuttlefish skin gelatin films.  相似文献   

17.
This study was conducted to extract protein from lentil seed and prepare edible film from the protein and to determine mechanical, optical and barrier properties of lentil protein concentrate (LPC) film. The film was prepared from LPC (5 g/100 ml water) and glycerine (50%, w/w of LPC). Hunter color value (L, a and b), tensile strength, percentage elongation at break (E), puncture strength, water vapor permeability (WVP), moisture content after conditioning at 50% RH and 25 °C for 48 h and total soluble matter after immersion in water, were measured. In regarding to WVP, in spite of difference in film thickness and relative humidity of experiment in different studies, lentil protein film is comparable with other protein films. Characteristics of the lentil protein-based edible films were comparable with other edible protein films. LPC film had more red and less yellow color; it seems that the film had good mechanical properties and water vapor permeability in concomitant with good solubility.  相似文献   

18.
Effects of heat treatment at different temperatures (40–90 °C) of film-forming solution (FFS) containing 3% gelatin from cuttlefish (Sepia pharaonis) ventral skin and 25% glycerol (based on protein) on properties and molecular characteristics of resulting films were investigated. The film prepared from FFS heated at 60 and 70 °C showed the highest tensile strength (TS) with the highest melting transition temperature (Tmax) (p < 0.05). Nevertheless, film from FFS heated at 90 °C had the highest elongation at break (EAB) with the highest glass transition temperature (Tg) (p < 0.05). With increasing heating temperatures, water vapor permeability (WVP) of films decreased (p < 0.05), but no differences in L*-value and transparency value were observed (p > 0.05). Based on FTIR spectra, the lower formation of hydrogen bonding was found in film prepared from FFS with heat treatment. Electrophoretic study revealed that degradation of gelatin was more pronounced in FFS and resulting film when heat treatment was conducted at temperature above 70 °C. Thus, heat treatment of FFS directly affected the properties of resulting films.  相似文献   

19.
The influence of structure on the water vapor permeability (WVP) of fat films was determined in this study. Statistically significant (P < 0.1) correlations were found between WVP and chemical composition (% stearic acid), the Avrami index (n), the half-time of crystallization (t1/2), the maximum solid fat content, and crystalline domain size determined by powder X-ray diffraction (XS). Larger domain sizes translate into a smaller grain boundary surface area through which water vapor can migrate, resulting in a lower WVP. High values of XS were associated with fats with high SFC and stearic acid contents. These fats also crystallize rapidly, with low n and t1/2 values.  相似文献   

20.
The physico-mechanical properties of 3 films composed by carvacrol, grape seed extract (GSE) and chitosan in different proportions were studied. The films, prepared by solvent casting technique with the following compositions of the casting solutions in carvacrol, GSE and chitosan: film-1: 9.6 ppm–684 ppm–1.25% w/v, film-2: 60 ppm–400 ppm–1.2% w/v and film-3: 90 ppm–160 ppm–1.24% w/v and were compared to a control (1.25% w/v chitosan) film. Mechanical, structural, barrier and colour properties of the films were evaluated. Film-3 presented the lowest water vapour and carbon dioxide permeabilities (WVP and CO2P) and tensile strength (TS) values and the highest oxygen permeability (O2P), whereas film-1 presented the highest water content and the lowest crystallinity, CO2P, TS and luminosity. These results suggest that in the range studied, carvacrol and GSE affect the film structure and its mechanical properties due to hydrophilic (GSE) and hydrophobic (carvacrol) compounds. This work will help the development of edible films, based on physico-mechanical properties, contributing to food preservation and shelf-life extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号