首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Impacts of microbial transglutaminase (MTGase) (0–0.6 units/g sample) on gel properties of Indian mackerel unwashed mince, surimi and protein isolates with and without prewashing were studied. Generally, lower myoglobin and lipid contents were found in protein isolate with and without prewashing, compared to those of unwashed mince and surimi (P < 0.05). Protein isolate had the decreased Ca2+-ATPase and protein solubility, indicating protein denaturation. When MTGase was incorporated, breaking force and deformation of all gels markedly increased, especially as MTGase levels increased (P < 0.05). At the same MTGase level, gel from protein isolate with prewashing exhibited the highest breaking force and deformation (P < 0.05). The addition of MTGase could lower the expressible moisture content of most gels. No change in whiteness of gel was observed with the addition of MTGase (P > 0.05), but gel from protein isolate gels had decreased whiteness as MTGase at high level was added. The microstructure of protein isolate gels without prewashing showed a similar network to unwashed mince gels, whilst a similar network was observed between surimi gel and gel from protein isolate with prewashing. Nevertheless, a larger void was noticeable in gels from protein isolates. All gels incorporated with MTGase (0.6 units/g) showed a slightly denser network than those without MTGase. Thus, gel with improved properties could be obtained from protein isolate from Indian mackerel with added MTGase.  相似文献   

2.
ABSTRACT:  The effects of microbial transglutaminase (MTGase) at different levels (0 to 0.8 units/g sample) on the properties of gels from lizardfish ( Saurida undosquamis ) mince set at 25 °C for 2 h or 40 °C for 30 min prior to heating at 90 °C for 20 min were studied. Breaking force and deformation of gels increased with increasing MTGase amount added ( P < 0.05). At the same MTGase level used, gels with the prior setting at 40 °C for 30 min showed a higher breaking force compared with those subjected to prior setting at 25 °C for 2 h ( P < 0.05). Sodium dodecyl sulfate-polyacrylamide gel electrophoretic study revealed that myosin heavy chain (MHC) underwent polymerization to a higher extent in the presence of MTGase. Regardless of setting condition, microstructure of gel added with MTGase was finer with a smaller void compared with that of gel without MTGase. Therefore, setting temperature affected the property of gels added with MTGase. Gel properties of mince obtained from lizardfish stored in ice for different times (0 to 10 d) with and without MTGase at a level 0.6 units/g were determined. Irrespective of MTGase addition, breaking force and deformation of all gels decreased as the storage time of lizardfish increased ( P < 0.05). The addition of MTGase was able to increase both breaking force and deformation of the resulting gel produced from lizardfish kept in ice for all storage times used. Therefore, both freshness and MTGase addition had the direct impact on gel properties of lizardfish mince.  相似文献   

3.
The objective of this study was to evaluate the effect of setting conditions (25 °C for 2 h or 40 °C for 30 min) and combining of microbial transglutaminase (MTGase) and high pressure processing (HPP) on the mechanical properties of heat induced gels obtained from paste from arrowtooth flounder (Atheresthes stomias). Treatments included fish paste control without added MTGase, fish paste incubated with MTGase but not pressurized (MTGase + cooking), fish paste incubated with MTGase and pressurized at 600 MPa for 5 min (MTGase + HPP + cooking) and fish paste pressurized at 600 MPa for 5 min and incubated with MTGase (HPP + MTGase + cooking). The controls and the treated samples were then subjected to one of two thermal treatments: 90 °C for 15 min or 60 °C for 30 min before cooking at 90 °C for 15 min. Samples of fish paste heated at 60 °C before cooking could not be used to prepare gels for texture profile analysis (TPA). TPA showed that pressurization improved the mechanical properties of gels made from paste treated with MTGase and set at 25 °C. The opposite was observed for samples set at 40 °C. Setting at 40 °C appeared to induce proteolytic degradation of myofibrillar proteins.  相似文献   

4.
Effects of different bambara groundnut protein isolates (BGPIs) at a level of 6 % (w/w) in combination with microbial transglutaminase (MTGase) at a concentration of 0.6 U g?1 surimi on gel properties of sardine (Sardinella albella) surimi were investigated. In the absence of MTGase, all BGPIs showed the adverse effect on gel-forming properties of surimi, as evidenced by the decreases in breaking force and deformation (P?<?0.05). When MTGase was incorporated, the increases in breaking force and deformation were found for all BGPIs used. Water-holding capacity of all gels was improved when BGPIs were added in combination with MTGase (P?<?0.05). Whiteness of gels slightly decreased with the addition of BGPIs; however, MTGase had no impact on whiteness (P?>?0.05). Surimi gel added with BGPI prepared from defatted flour with heat treatment in the presence of ethylenediaminetetraacetic acid (DF-BGPI-HE) and MTGase showed well-ordered network and exhibited the lowest peroxide value and thiobarbituric acid-reactive substances than those containing other BGPIs. Gel containing DF-BGPI-HE had negligible beany flavour. Additionally, DF-BGPI-HE had the lower amount of volatile compounds after storage of 30 days at room temperature than other BGPIs. Thus, the addition of DF-BGPI-HE and MTGase was an effective means to render sardine surimi gel with improved gel property and caused no beany flavour in resulting gel.  相似文献   

5.
Effects of different oxidised phenolic compounds (ferulic acid, OFA; tannic acid, OTA; catechin, OCT and caffeic acid, OCF) at different levels (0–0.25% of protein content) on the properties of gels from bigeye snapper (Priacanthus tayenus) surimi were investigated. Breaking force and deformation of surimi gel varied with types and amounts of oxidised phenolic compounds. Gels added with 0.20% OFA, 0.05% OTA, 0.15% OCF and 0.05% OCT exhibited the marked increases in both breaking force and deformation, compared with the control (P < 0.05). Those increases were associated with lower expressible moisture content. No increases in both breaking force and deformation were observed when ferulic acid without oxygenation at alkaline pH was added, regardless of amount added (P > 0.05). No changes in the whiteness of gel were found with addition of OFA (P > 0.05), but the decreases in whiteness were noticeable as other oxidised phenolics were incorporated (P < 0.05). Different microstructures were obtained among gels with different oxidised phenolics. The physicochemical properties of natural actomyosin suggest that oxidised phenolics could induce conformational changes and the cross-linking through amino groups or the induction of disulphide bond formation. Therefore, the addition of oxidised phenolic compounds at the optimum level could increase the gel strength of surimi gel.  相似文献   

6.
Impact of formaldehyde (FA) at various levels (0–9 μmol/g surimi) on gel properties of surimi from lizardfish added with microbial transglutaminase (MTGase) was studied. During iced storage of 10 days, total and free FA in lizardfish flesh increased continuously (P < 0.05). In the presence of FA, breaking force of gels slightly increased, whilst the deformation decreased (P < 0.05). The addition of MTGase (0.4 units/g surimi) was able to increase gel strength and water holding capacity of resulting gel. Nevertheless, gel strengthening effect of MTGase was lowered when FA at higher level was present. Myosin heavy chain (MHC) dominantly underwent polymerisation to a higher extent when either MTGase or FA was added. The higher reduction in ε-amino group content was observed in natural actomyosin (NAM) when FA at higher levels (0–30 μmol/g protein) was incorporated. Acyl transfer reaction mediated by MTGase was impeded in NAM containing FA, especially at higher levels. Generally, FA had an adverse effect on cross-linking ability towards surimi proteins induced by MTGase. Therefore, cross-linking and gel-forming ability of lizardfish surimi could be maximised by MTGase when surimi contained no FA.  相似文献   

7.
Effects of porcine plasma protein (PPP) and high temperature setting on gel properties of surimi from bigeye snapper, bigeye croaker, threadfin bream and barracuda were investigated. PPP was effective in increasing breaking force and deformation of kamaboko gels set at 40°C for 30 min and heated at 90°C for 20 min. The optimum levels of PPP were 0.5, 0.5, 1.5 and 1.5 g/100 g and the optimum setting times were 2, 1.5, 1.5 and 2 h for bigeye snapper, bigeye croaker, threadfin bream and barracuda surimi, respectively. However, the addition of PPP significantly decreased whiteness (P<0.05). An increase in gel-forming ability of surimi with PPP coincided with a decrease in solubility in mixture of SDS, urea and β-mercaptoethanol, indicating the formation of nondisulfide covalent bond induced by both endogenous and plasma transglutaminase. The results supported that PPP improve the gelation of surimi in combination with setting.  相似文献   

8.
Effects of whey protein concentrate (WPC) on autolysis inhibition and gel properties of surimi produced from bigeye snapper (Priacanthus tayenus), goatfish (Mulloidichthys vanicolensis), threadfin bream (Nemipterus bleekeri) and lizardfish (Saurida tumbil) were investigated. WPC (0–3%) showed inhibitory activity against autolysis in all surimi at both 60 and 65 °C in a concentration-dependent manner. Myosin heavy chain (MHC) of surimi was more retained in the presence of WPC. Breaking force and deformation of kamaboko gels of all surimi increased as added levels of WPC increased (P < 0.05). This was associated with lower levels of protein degradation, as evidenced by the decrease in trichloroacetic acid-soluble peptide content (P < 0.05). WPC at 3% (w/w) significantly decreased the whiteness of gels. However, water-holding capacity of kamaboko gels was improved with increasing concentration of WPC. The microstructure of surimi gels generally became denser with the addition of WPC.  相似文献   

9.
Rheological properties of heat-induced pea protein isolate (PPI) gels with added microbial transglutaminase (MTGase) were studied under various reaction conditions. A positive linear relationship was observed between level of MTGase used (0 to 0.7% w/w) and shear stress and shear strain of heat-set commercial pea protein isolate (PPIc) gels at 92 °C following incubation at 50 °C. Use of MTGase allowed for preparation of PPIc gels of similar strength and elasticity as commercial soy protein isolate gels and commercial meat bologna. MTGase treatment did not alter thermal properties of PPI gels. The shear stress and strain of PPIc gels were also improved following low temperature (4 °C) incubation of PPI with MTGase. Enhancement of shear strain or gel elasticity of heat-induced PPI gels with MTGase has not been reported before and provides opportunities for extending the properties of pea proteins when developing new food products.  相似文献   

10.
Chuan-He Tang 《LWT》2007,40(8):1403-1409
The influence of thermal pretreatment of raw soymilk on the gel hardness and microstructure of tofu, induced by microbial transglutaminase (MTGase), was investigated in this paper. Modulated differential scanning calorimetry analysis showed that individual proteins in soymilk were to a various extent denatured by different thermal pretreatments. The viscosity of the soymilk and the gel hardness of MTGase-induced tofu were more highly related with the heating rate (up to 90 °C) than the mode of heating. At any enzyme concentration of MTGase, the tofus prepared from soymilk heated at 75 °C for 10 or 30 min showed highest gel hardness among all tested ones (P?0.05). Scanning electron microscopy analysis indicated that the microstructure of the tofu from soymilk heated at 75 °C for 30 min had a unique coral-like structure, much more continuous and homogenous than that from soymilk at 95 °C for 5 min. These results confirmed that the appropriate heat pretreatment (e.g. in the present, at 75 °C for 10-30 min) remarkably improved the gel strength of tofu by means of MTGase, and strengthened the tofu gel structure.  相似文献   

11.
《Food chemistry》2003,82(4):567-574
Effects of setting at 25 °C on textural properties and cross-linking of myofibrillar proteins in surimi produced from threadfin bream (Nemipterus bleekeri), bigeye snapper (Priacanthus tayenus), barracuda (Sphyraena jello) and bigeye croaker (Pennahai macrophthalmus) were investigated. Increase in setting time (0–8 h) resulted in a higher breaking force and deformation for all surimi gels tested (P<0.05). Increased gel strength was associated with increase in non-disulfide bond formation and decreased heavy chain myosin. Proteins underwent degradation during setting; however polymerization occurred to a much higher extent, leading to a strengthened gel matrix. Therefore, setting at 25 °C, for an appropriate time, should be a promising means to improve gelling properties of surimi produced from tropical fish.  相似文献   

12.
Effect of chitosan on barred garfish (Hemiramphus far) surimi gel was studied in the presence of EDTA and microbial transglutaminase (MTGase). An increase in breaking force of surimi gels added with 1.0% prawn shell chitosan indicated the gel enhancing effect of chitosan on the heat‐induced gelation of fish myofibrillar proteins. However, gel‐forming ability of surimi containing chitosan was inhibited in the presence of EDTA, especially at higher concentration. Therefore, the enhancing effect of chitosan was possibly mediated through the action of endogenous transglutaminase (TGase) during setting, resulting in the formation of protein‐protein and protein‐chitosan conjugates. In general, addition of MTGase remarkably increased both breaking force and deformation of surimi gel (P<0.05). However, enhancing effect of MTGase was retarded in the presence of chitosan, resulting in lower magnitude of breaking force and deformation (P<0.05). Scanning electron microscopy showed that chitosan particles were uniformly dispersed in the gel matrix. A tightly associated gel network was formed in surimi containing MTGase, whereas a large number of voids were noted in gels with EDTA. These results suggest that chitosan acted as a surimi gel enhancer in combination with endogenous TGase in fish muscle, but hindered gel formation in the presence of MTGase.  相似文献   

13.
Surimi gels from Alaska Pollock were obtained by heating and maintaining their central temperature at 100 ± 1 °C, 105 ± 1 °C, 110 ± 1 °C, 115 ± 1 °C and 120 ± 1 °C for 10 min respectively under a certain pressure (0.12 MPa). With temperature increasing, both the breaking force and gel strength decreased significantly (P < 0.05) while the deformation decreased with a much smaller gradient. The ionic bonds and the hydrophobic interactions declined with a drastic rate while the hydrogen bonds and the disulfide bonds took on an increasing trend on the whole. NMR spin–spin relaxation (T2) measurements showed that most of the water in the gels is movable water, the peak of T22 became lower and the relaxation time of T22 became longer with treating temperature increasing. SDS–PAGE showed that high-temperature treatment decreased the content of myosin heavy chain (MHC) entirely and significantly decreased the content of actin. SEM showed that the gel treated with 100 ± 1 °C showed a uniform network structure with strong frames.  相似文献   

14.
We investigated the properties of gels that were formed by adding emulsifying salts, such as tetrasodium pyrophosphate (TSPP), to reconstituted milk protein concentrate solution. The pH of a 51 g/L milk protein concentrate solution was adjusted to 5.8 after adding TSPP. Milk protein concentrate solutions were placed in glass jars and allowed to stand at 25°C for 24 h. Gels with the highest breaking force were formed when TSPP was added at a concentration of 6.7 mM, whereas no gel was formed when TSPP was added at concentrations of ≤2.9 or ≥10.5 mM. Several other phosphate-based emulsifying salts were tested but for these emulsifying salts, gelation only occurred after several days or at greater gelation temperatures. No gelation was observed for trisodium citrate. Gelation induced by TSPP was dependent on pH, and the breaking force of gel was greatest at pH 6.0. Furthermore, when the concentration of milk protein concentrate in solution was increased to 103 g/L, the breaking force of the gel increased, and a clearly defined network between caseins could be observed by using confocal scanning laser microscopy. These results suggest that TSPP-induced gelation occurs when the added TSPP acts with calcium as a cross-linking agent between dispersed caseins and when the balance between (a reduced) electrostatic repulsion and (enhanced) attractive (hydrophobic) interactions becomes suitable for aggregation and eventual gelation of casein molecules.  相似文献   

15.
Chemical and biochemical changes of aquacultured hybrid catfish fillet (Clarias macrocephalus × Clarias gariepinus) and its gel-forming ability as affected by age and sex of fish along with storage time were investigated. Fillets were stored at 4 °C for 0, 3, 6, 9, 12 and 15 days. There was no significant effect of sex and age of fish as well as storage time on fat, moisture and ash contents (P > 0.05). The total protein, water soluble protein, and salt soluble protein contents of the fillets significantly decreased with storage time (P < 0.05). On the other hand, pH, total volatile base nitrogen (TVB-N) and autolytic degradation products (ADP) increased as storage time continued (P < 0.05). Decreases in Ca2+-ATPase activity and gel properties were observed as storage time increased. However, there was no significant effect of either sex or age of fish on textural properties of gel (P > 0.05). Hybrid catfish fillet stored at 4 °C should be processed within 6 days.  相似文献   

16.
Chee-Yuen Gan 《LWT》2009,42(1):174-179
Soy protein isolate (SPI), microbial transglutaminase (MTGase) and ribose (R) were used to modify physical properties and in-vitro starch hydrolysis of yellow noodle. Four types of noodles were produced; noodles with SPI (SPI/C noodles), noodles with SPI and ribose (SPI/R noodles), noodles with SPI and microbial transglutaminase (SPI/MTGase noodles) and noodles with SPI, ribose and MTGase (SPI/R/MTGase noodles). γ-glutamyl-lysine bonds by MTGase and ribose-induced Maillard reaction within SPI were induced by incubating the noodles for 5 h at 40 °C followed by steaming for 30 min. Cooked noodles were assessed for physical properties such as pH, color, tensile strength and elasticity, and in-vitro hydrolysis index (HI) and estimated glycemic index (GI). SPI/R/MTGase and SPI/MTGase noodles exhibited significantly (P < 0.05) higher tensile strength and elasticity than SPI/R and SPI/C noodles. HI and GI were in the order; SPI/R/MTGase < SPI/MTGase < SPI/R < SPI/C noodles. Incorporation of SPI that was treated with MTGase and ribose may be useful for controlling the texture and starch hydrolysis of yellow noodles. These attributes may be due to the formation of γ-glutamyl-lysine bonds during incubation of SPI, and ribose-induced Maillard reaction during steaming of the noodles.  相似文献   

17.
Low-fat protein gels obtained by pressure are softer than those processed by conventional heat treatment. In this study, microbial transglutaminase (MTGase) (0.3%) was added to chicken batters in order to investigate the combined effect of pressure and enzyme on the functional properties of gels. Batters of meat with egg proteins were treated at 500 MPa for 30 min at 40 °C and then heated at 75 °C for 5 min to inactivate the enzyme. Treated samples showed, under confocal microscopy, a more compact and homogeneous microstructure and exhibited a notable increase in hardness and chewiness as compared to controls that were pressurized but contained no MTGase. They were also harder, more chewy and springy but had a similar cohesiveness and cutting force to those obtained by heat alone.  相似文献   

18.
The viability of using microbial transglutaminase (MTGase) as a cold-set binder for restructuring and manufacturing deboned dry ham (RDH) was evaluated. The influence of meat pre-treatment, preparation of the MTGase, packing system and set temperature on the binding rate and force was tested using pork models and deboned legs. The best binding parameters were obtained when meat surfaces were evenly distributed with salts (NaCl, KNO3, NaNO2) and then washed with a saline solution (W), afterwards powder (P) or liquid (L) MTGase was applied, and simultaneous salting and vacuum packing (S) set at 7 °C were performed. The RDH manufactured following these procedures (WPS and WLS) was stable during drying and could resist the handling and production process. Binding force increased (< 0.05) during 8 weeks of drying. Scanning electron microscopy analysis showed an increase of cross-links during the drying period of RDH related to the increase in binding force.  相似文献   

19.
Hydrolyzed wheat gluten (GH, 77–85% protein) was prepared by limited chymotrypsin digestion at 37 °C for 4 h (degree of hydrolysis = 6.4%) and 15 h (degree of hydrolysis = 10.3%). Microbial transglutaminase (MTGase) treatment (55 °C for 1 h, or 5 °C for 18 h) effect on the solubility and structural characteristics of GH was examined under selected food processing conditions (pH 4.0–7.0, 0–0.6 M NaCl). The MTGase treatment increased solubility of GH by 3–29-fold (P < 0.05) within pH 4.0–7.0. Addition of 0.6 M NaCl or changing the conditions of MTGase incubation did not significantly alter solubility characteristics of GH. The MTGase treatment decreased surface hydrophobicity, and increased carboxyl groups in GH, suggesting cross-linking and deamidation. Fluorescence and UV spectra attributed the improved GH solubility to MTGase-induced polar environment, and partial masking of some nonpolar aromatic amino acids possibly due to high-molecular-weight polypeptides formed.  相似文献   

20.
The supercritical fluid extraction (SFE) trends and antioxidant activities of Hibiscus cannabinus seed oils were studied. SFE results indicate that extraction pressure is the major factor determining the oil yield. In comparison, classic Soxhlet extraction (SOX/L) yielded higher oil content than SFE (P < 0.05). However, no significant differences in oil content were observed in SFE at 600 bars/80 °C, rapid Soxhlet extraction (SOX/S) and conventional ultra-sonic assisted solvent extraction (SONIC) (P > 0.05). Antioxidant activities of H. cannabinus seed oils were compared with 7 types of commercial edible oils. DPPH scavenging activity test indicated that H. cannabinus seed oil extracted by SFE at 200 bars/80 °C possessed the highest antiradical activity whereas beta-carotene bleaching (BCB) assay revealed that all H. cannabinus seed oils (except for SFE at 400 bars/80 °C and 600 bars/80 °C) exhibited higher antioxidant activity than all commercial edible oils (P < 0.05). Thus, SFE – H. cannabinus seed oil may serve as an excellent source of solvent-free edible oil with high antioxidant properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号