首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
本文提出一种基于半监督主动学习的算法,用于解决在建立动态贝叶斯网络(DBN)分类模型时遇到的难以获得大量带有类标注的样本数据集的问题.半监督学习可以有效利用未标注样本数据来学习DBN分类模型,但是在迭代过程中易于加入错误的样本分类信息,并因而影响模型的准确性.在半监督学习中借鉴主动学习,可以自主选择有用的未标注样本来请求用户标注.把这些样本加入训练集之后,能够最大程度提高半监督学习对未标注样本分类的准确性.实验结果表明,该算法能够显著提高DBN学习器的效率和性能,并快速收敛于预定的分类精度.  相似文献   

2.
为抑制噪声数据对分类结果的影响,将噪声处理算法与高斯随机域算法相结合,提出一种带噪声系数的高斯随机域学习算法;针对样本集不平衡性数据分类问题,考虑主动学习在样本不平衡问题中的应用,将主动学习与图半监督算法相结合,提出一种鲁棒性强的主动学习图半监督分类算法。利用基于样本划分的主动学习方法,对正类的近邻样本集中样本与特定类样本形成的新样本集做总体散度排序,筛选出能使新样本集中总体散度最小的样本,代替正类的近邻样本集中所有样本,形成平衡类。在UCI标准数据集上的实验结果表明,与标准的图半监督算法相比,该算法的分类精度更高、泛化能力更强。  相似文献   

3.
郭鹏  李乃祥  刘同海 《计算机工程》2011,37(10):143-145
提出利用进化MCMC算法进行动态贝叶斯网络(DBN)学习的方法。在数据缺省情况下利用EM算法进行贝叶斯网络参数学习,结构学习部分生成多条备选的贝叶斯网络染色体,对染色体进行变异操作和交叉操作,在遗传操作中根据温度参数和贝叶斯网络及贝叶斯信息准则来构造MCMC函数,并利用MCMC函数进行贝叶斯网络学习。每一代进化后,将贝叶斯信息评分最大的贝叶斯网络作为结构学习的结果。实验结果验证了该方法性能的稳定性。  相似文献   

4.
基于信息熵的主动学习半监督分类研究   总被引:1,自引:2,他引:1  
针对小规模训练样本不足以支持学习器对含有大量潜在不确定因素的未标样本集分类的问题,提出了一种基于信息熵的主动学习方法,引入信息熵的离散事件概率估计理论,通过对未标文档熵值的计算,结合二阶段学习策略,主动学习利用现有知识,结合实验样本环境,主动地选取最有可能的解决问题的样本并标注它们的类别,获得新的参数,重新训练分类器,选择最有利分类器性能的样本,迭代直到未标样本集为空。实验结果表明,该方法取得了较好的分类效果。  相似文献   

5.
陈锦禾  沈洁 《微机发展》2010,(2):110-113
针对小规模训练样本不足以支持学习器对含有大量潜在不确定因素的未标样本集分类的问题,提出了一种基于信息熵的主动学习方法,引入信息熵的离散事件概率估计理论,通过对未标文档熵值的计算,结合二阶段学习策略,主动学习利用现有知识,结合实验样本环境,主动地选取最有可能的解决问题的样本并标注它们的类别,获得新的参数,重新训练分类器,选择最有利分类器性能的样本,迭代直到未标样本集为空。实验结果表明,该方法取得了较好的分类效果。  相似文献   

6.
EM(Expectation Maximization)算法是含有隐变量(latent variable)的概率参数模型最大似然估计、极大后验概率估计最有效的算法,但很容易进入局部最优现象,对此提出基于半监督机器学习机制的EM算法.本文方法是在最大似然函数中加入惩罚最小二乘因子,同时引入非负约束作为先验信息,结合半监督机器学习方法,将EM算法改进转化为最小化求解问题,再采用最大似然方法求解EM模型,有效估计了混合矩阵和高斯混合模型参数,实现EM算法的改进.仿真结果表明,该方法能够很好地解决了EM算法容易局部最优化问题.  相似文献   

7.
借鉴半监督分类的思想,本文提出一种基于改进EM算法的贝叶斯分类模型,对移动通信网络中存在的大量随机缺失的非平衡数据进行分类。首先,从实际数据中经过初步统计分析得到能在一定程度上反应变量状态的先验概率,并以此作为贝叶斯分类模型的初始值进行EM迭代训练,从而减少EM算法的迭代次数并改善EM算法对初始值的敏感性以及局部收敛的缺陷;然后,利用对历史移动通信数据进行训练得到的叶斯网络分类模型,对测试数据进行预测分类。实验结果表明,该方法大大提高了移动通信数据中负类样本的预测成功率,与传统的数理统计分析方法相比较,表现出了更好的性能。  相似文献   

8.
基于主动学习和半监督学习的多类图像分类   总被引:5,自引:0,他引:5  
陈荣  曹永锋  孙洪 《自动化学报》2011,37(8):954-962
多数图像分类算法需要大量的训练样本对分类器模型进行训练.在实际应用中, 对大量样本进行标注非常枯燥、耗时.对于一些特殊图像,如合成孔径雷达 (Synthetic aperture radar, SAR)图像, 对其内容判读非常困难,因此能够获得的标注样本数量非常有限. 本文将基于最优标号和次优标号(Best vs second-best, BvSB)的主动学习和带约束条件的自学习(Constrained self-training, CST) 引入到基于支持向量机(Support vector machine, SVM)分类器的图像分类算法中,提出了一种新的图像分类方法.通过BvSB 主动学习去挖掘那些对当前分类器模型最有价值的样本进行人工标注,并借助CST半 监督学习进一步利用样本集中大量的未标注样本,使得在花费较小标注代价情况下, 能够获得良好的分类性能.将新方法与随机样本选择、基于熵的不确定性采样主动学 习算法以及BvSB主动学习方法进行了性能比较.对3个光学图像集及1个SAR图像集分类 问题的实验结果显示,新方法能够有效地减少分类器训练时所需的人工标注样本的数 量,并获得较高的准确率和较好的鲁棒性.  相似文献   

9.
一种基于内容图像检索的半监督和主动学习算法   总被引:1,自引:0,他引:1  
为了提高图像检索中相关反馈算法的效率,提出了一种新的基于相关概率的主动学习算法SVMpr,并结合半监督学习,设计了基于半监督的主动学习图像检索框架。在相关反馈过程中,首先利用半监督学习算法TSVM对标记样本进行训练,然后根据提出的主动学习算法从未标记图像中选取k幅有利于优化学习过程的图像并反馈给用户标记。与传统的相关反馈算法相比,该文提出的图像检索框架显著提高了学习器的效率和性能,并快速收敛于用户的查询概念。  相似文献   

10.
半监督学习是人工智能领域一个重要的研究内容;在半监督学习中,如何有效利用未标记样本来提高分类器的泛化性能,是机器学习研究的热点和难点;主动学习可解决未标记样本有效利用的问题,将主动学习引入到半监督分类中,并改进贝叶斯算法,提出了一种基于改进贝叶斯算法的主动学习与半监督学习结合算法;实验结果表明,该方法取得了较好的分类效果。  相似文献   

11.
李延超  肖甫  陈志  李博 《软件学报》2020,31(12):3808-3822
主动学习从大量无标记样本中挑选样本交给专家标记.现有的批抽样主动学习算法主要受3个限制:(1)一些主动学习方法基于单选择准则或对数据、模型设定假设,这类方法很难找到既有不确定性又有代表性的未标记样本;(2)现有批抽样主动学习方法的性能很大程度上依赖于样本之间相似性度量的准确性,例如预定义函数或差异性衡量;(3)噪声标签问题一直影响批抽样主动学习算法的性能.提出一种基于深度学习批抽样的主动学习方法.通过深度神经网络生成标记和未标记样本的学习表示和采用标签循环模式,使得标记样本与未标记样本建立联系,再回到相同标签的标记样本.这样同时考虑了样本的不确定性和代表性,并且算法对噪声标签具有鲁棒性.在提出的批抽样主动学习方法中,算法使用的子模块函数确保选择的样本集合具有多样性.此外,自适应参数的优化,使得主动学习算法可以自动平衡样本的不确定性和代表性.将提出的主动学习方法应用到半监督分类和半监督聚类中,实验结果表明,所提出的主动学习方法的性能优于现有的一些先进的方法.  相似文献   

12.
张雁  吴保国  吕丹桔  林英 《计算机工程》2014,(6):215-218,229
半监督学习和主动学习都是利用未标记数据,在少量标记数据代价下同时提高监督学习识别性能的有效方法。为此,结合主动学习方法与半监督学习的Tri-training算法,提出一种新的分类算法,通过熵优先采样算法选择主动学习的样本。针对UCI数据集和遥感数据,在不同标记训练样本比例下进行实验,结果表明,该算法在标记样本数较少的情况下能取得较好的效果。将主动学习与Tri-training算法相结合,是提高分类性能和泛化性的有效途径。  相似文献   

13.
基于EM的启动子序列半监督学习   总被引:1,自引:0,他引:1  
启动子的预测对于基因的定位有重要意义.已有多种对启动子进行预测的算法,涉及到信号搜索、内容搜索和CpG岛搜索等多种策略.基于马尔可夫模型的启动子分类方法也有研究,其中的转移概率都是直接通过统计已标号训练样本序列得来的.将半监督学习思想引入启动子序列分析中,推导出转移概率等参数的最大似然估计公式.实验中将待测试基因序列片段同已标号训练样本混合,利用得出的参数值对基因序列片段进行识别,使用少量的已标号的样本数据能得出较好的启动子识别结果.  相似文献   

14.
在实际应用中,容易获取大量的未标记样本数据,而样本数据是有限的,因此,半监督分类算法成为研究者关注的热点.文中在协同训练Tri-Training算法的基础上,提出了采用两个不同的训练分类器的Simple-Tri-Training方法和对标记数据进行编辑的Edit-Tri-Training方法,给出了这三种分类方法与监督分类SVM的分类实验结果的比较和分析.实验表明,无标记数据的引入,在一定程度上提高了分类的性能;初始训练集和分类器的选取以及标记过程中数据编辑技术,都是影响半监督分类稳定性和性能的关键点.  相似文献   

15.
基于自适应SVM的半监督主动学习视频标注   总被引:1,自引:0,他引:1  
具有不同分布特性的视频包含相同的语义概念,会表现出不同的视觉特征,从而导致标注正确率下降。为解决该问题,提出一种基于自适应支持向量机(SVM)的半监督主动学习视频标注算法。通过引入?函数和优化模型参数将现有分类器转换为自适应支持向量(A-SVM)分类器,将基于高斯调和函数的半监督学习融合到基于A-SVM的主动学习中,得出相关性评价函数,根据评价函数对视频数据进行标注。实验结果表明,该算法在跨域视频概念检测问题上的平均标准率为68.1%,平均标全率为60%,与支持向量机半监督主动学习和基于直推式支持向量机半监督主动学习相比有所提高。  相似文献   

16.
基于半监督学习的网络流量分类   总被引:1,自引:1,他引:0  
佘锋  王小玲 《计算机工程》2009,35(12):90-91
利用攻击在网络通信中独特的流特征,给出一个可以适应已知和未知攻击的半监督分类方法。在训练分类器中,提出使用加权采样技术得到训练流,同时采用顺序前向选择算法得到最佳的特征子集。使用KDDCUP1999性能评估数据,可以得到较高的流和字节分类准确度。  相似文献   

17.
情感分类是目前自然语言处理领域的一个具有挑战性的研究热点,该文主要研究基于半监督的文本情感分类问题。传统基于Co-training的半监督情感分类方法要求文本具备大量有用的属性集,其训练过程是线性时间的计算复杂度并且不适用于非平衡语料。该文提出了一种基于多分类器投票集成的半监督情感分类方法,通过选取不同的训练集、特征参数和分类方法构建了一组有差异的子分类器,每轮通过简单投票挑选出置信度最高的样本使训练集扩大一倍并更新训练模型。该方法使得子分类器可共享有用的属性集,具有对数时间复杂度并且可用于非平衡语料。实验结果表明我们的方法在不同语种、不同领域、不同规模大小,平衡和非平衡语料的情感分类中均具有良好效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号