首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors give results of measuring the hydraulic resistance, heat transfer, and temperature fields at the numbers Re=70–3·104 and Pr=5.5–8 for cooling systems with rectangular channels with different kinds of discontinuity of their walls involving additional channels that act as intensifiers of heat transfer. The regions of Re numbers in which this intensification is energy-profitable are revealed. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 73, No. 2, pp. 224–231, March–April, 2000.  相似文献   

2.
Flexible piezo- and pyroelectric composite was made in the thin film form by spin coating. Lead Zirconate Titanate (PZT) ceramic powder was dispersed in a castor oil-based polyurethane (PU) matrix, providing a composite with 0–3 connectivity. The dielectric data, measured over a wide range of frequency (10–5 Hz to 105 Hz), shows a loss peak around 100 Hz related with impurities in the polymer matrix. There is also an evidence of a peak in the range 10–4 Hz, possibly originating from the glass transition temperature Tg of the polymer. The pyroelectric coefficient at 343 K is 7.0×10–5 C·m–2·K–1 which is higher than that of β-PVDF (1×10–5 C·m–2·K–1). Electronic Publication  相似文献   

3.
The transient fin model introduced recently for determination of the in-plane thermal diffusivity of planar samples with the help of infrared thermography was modified so as to be applicable to poor heat conductors. The new model now includes a temperature-dependent heat loss by convective heat transfer, suitable for an experimental setup in which the sample is aligned parallel to a weak, forced air flow stabilizing otherwise the convective heat transfer. The temperature field in the sample was measured with an infrared camera while the sample was heated at one edge. The symmetric temperature field created was averaged over the central fifth of the sample to obtain one-dimensional temperature profiles, both transient and stationary, which were fitted by a numerical solution of the fin model. One of the fitting parameters was the thermal diffusivity, and with a known density and specific heat capacity, the thermal conductivity was thus determined. The test measurements with tantalum samples gave the result (57.5 ± 0.2) W · m−1 · K−1 in excellent agreement with the known value. The other fitting parameter was a temperature-dependent heat loss coefficient from which the lower limit for the temperature-dependent convection coefficient was determined. For the stationary state the result was (1.0 ± 0.2) W · m−2 · K−1 at the temperature of the flowing air, and its temperature dependence was found to be (0.22 ± 0.01) W ·m−2 · K−2.  相似文献   

4.
It is shown that intense saturation of the surface layers of a hardened metal with nickel, copper, and chromium from electroplates occurs in the course of mechanical pulse treatment in the zone of frictional contact. In this case, the mass transfer coefficients range from 0.95·10−7 to 1.1·10−7 m2/sec. It is established that the number of alloying elements is defined by the number of generated dislocations. Karpenko Physicomechanical Institute, Ukrainian Academy of Sciences, L'viv. Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 34, No. 3, pp. 108–110, May–June, 1998.  相似文献   

5.
A laser-based fiber-optic interference refractometer for use in automatic control of the gradient of the index of refraction of large plane-parallel glass optical elements with resolution on the order of 8·10–7 cm–1 and absolute error at most 2·10–5 cm–1 is proposed.  相似文献   

6.
High-speed video filming by the VS-FAST-NG CCD-array-based video camera from the firm of Videoskan with speeds of 1000 and 5000 frames per second and exposure time of 1·10−3 and 2·10−4 sec, respectively, is conducted. It is established that the arc burns from two or three cathode spots for (1–1.2)·10−3 sec. The mean and local speeds of the group of cathode spots are determined. If there is no external magnetic field present, the mean speed is equal to 5–6 m/sec. If there is a magnetic field B = 0.005 T present, the mean speed is equal to 15–16 m/sec. __________ Translated from Izmeritel'naya Tekhnika, No. 10, pp. 42–44, October, 2005.  相似文献   

7.
Transparent and conducting SnO2 films are prepared at 500°C on quartz substrates by chemical vapour deposition technique, involving oxidation of SnCl2. The effect of oxygen gas flow rate on the properties of SnO2 films is reported. Oxygen with a flow rate from 0·8–1·35 lmin−1 was used as both carrier and oxidizing gas. Electrical and optical properties are studied for 150 nm thick films. The films obtained have a resistivity between 1·72 × 10−3 and 4·95 × 10−3 ohm cm and the average transmission in the visible region ranges 86–90%. The performance of these films was checked and the maximum figure of merit value of 2·03 × 10−3 ohm−1 was obtained with the films deposited at the flow rate of 1·16 lmin−1.  相似文献   

8.
A large number of thin films of cadmium oxide have been prepared on glass substrates by spray pyrolysis method. The prepared films have uniform thickness varying from 200–600 nm and good adherence to the glass substrate. A systematic study has been made on the influence of thickness on resistivity, sheet resistance, carrier concentration and mobility of the films. The resistivity, sheet resistance, carrier concentration and mobility values varied from 1·56–5·72×10−3 Ω-cm, 128–189 Ω/□, 1·6–3·9×1021 cm−3 and 0·3–3 cm2/Vs, respectively for varying film thicknesses. A systematic increase in mobility with grain size clearly indicates the reduction of overall scattering of charge carriers at the grain boundaries. The large concentration of charge carriers and low mobility values have been attributed to the presence of Cd as an impurity in CdO microcrystallites. Using the optical transmission data, the band gap was estimated and found to vary from 2·20–2·42 eV. These films have transmittance around 77% and average reflectance is below 2·6% in the spectral range 350–850 nm. The films aren-type and polycrystalline in nature. SEM micrographs of the CdO films were taken and the films exhibit clear grains and grain boundary formation at a substrate temperature as low as 523 K.  相似文献   

9.
Deep level transient spectroscopy (DLTS) was carried out on single crystals of the layered chalcogenide p-GaTe using Schottky barriers parallel and perpendicular to the layer planes to study the possible anisotropy of the defect levels. Deep levels with the same energies (0·28 eV and 0·42–0·45eV) have been found in both directions with concentrations ranging from 1013cm−3 to 1014 cm−3 and capture cross-sections from 10−15cm2 to 10−17cm2. The difference in the spectra obtained from the two planes and the possible reason for the deep level energies being independent of crystal orientation are discussed.  相似文献   

10.
The dental zirconia–leucite composites were synthesized by high temperature solid-state method using potash feldspar, potassium carbonate and zirconia as raw materials. The mechanical properties and the coefficient of thermal expansion (CTE) of the prepared zirconia–leucite composites were tested. The results show that the bending strength, the fracture toughness and the metal–ceramic bonding strength of the prepared samples are about 110 MPa, 3·5 MPa/m1/2 and 45 MPa, respectively. The CTE was about 13·73×10–6 °C–1 and close to that of Ni–Cr dental alloy (14·0×10–6 °C–1). The results indicate that the introduction of zirconia is beneficial to the improvement in the mechanical properties and CTE adjustment of porcelain material. The clinical application of the zirconia–leucite composites with good metal–ceramic bonding strength in the dental restoration could be envisioned.  相似文献   

11.
One attractive possibility to essentially improve the insulation properties of glazing is to evacuate the space between the glass panes. This eliminates heat transport due to convection between the glass panes and suppresses the thermal conductivity of the remaining low pressure filling gas atmosphere. The glass panes can be prevented from collapsing by using a matrix of spacers. These spacers, however, increase heat transfer between the glass panes. To quantify this effect, heat transfer through samples of evacuated glazing was experimentally determined. The samples were prepared with different kinds of spacer materials and spacer distances. The measurements were performed with a guarded hot-plate apparatus under steady-state conditions and at room temperature. The measuring chamber of the guarded hot plate was evacuated to < 10−2 Pa. An external pressure load of 0.1 MPa was applied on the samples to ensure realistic system conditions. Radiative heat transfer was significantly reduced by preparing the samples with a low-ε coating on one of the glass panes. In a first step, measurements without any spacers allowed quantification of the amount of radiative heat transfer. With these data, the measurements with spacers could be corrected to separate the effect of the spacers on thermal heat transfer. The influence of the thermal conductivity of the spacer material, as well as the distance between the spacers and the spacer geometry, was experimentally investigated and showed good agreement with simulation results. For mechanically stable matrices with cylindrical spacers, experimental thermal conductance values ≤0.44W·m−2 ·K−1 were found. This shows that U g -values of about 0.5W · m−2 · K−1 are achievable in evacuated glazing, if highly efficient low-emissivity coatings are used.  相似文献   

12.
Carbon aerogels, monolithic porous carbons derived via pyrolysis of porous organic precursors synthesized via the sol–gel route, are excellent materials for high-temperature thermal insulation applications both in vacuum and inert gas atmospheres. Measurements at 1773K reveal for the aerogels investigated thermal conductivities of 0.09W · m−1 · K−1 in vacuum and 0.12W · m−1 · K−1 in 0.1MPa argon atmosphere. Analysis of the different contributions to the overall thermal transport in the carbon aerogels shows that the heat transfer via the solid phase dominates the thermal conductivity even at high temperatures. This is due to the fact that the radiative heat transfer is strongly suppressed as a consequence of a high infrared extinction coefficient and the gaseous contribution is reduced since the average pore diameter of about 600nm is limiting the mean free path of the gas molecules in the pores at high temperatures. Based on the thermal conductivity data detected up to 1773K as well as specific extinction coefficients determined via infrared-optical measurements, the thermal conductivity can be extrapolated to 2773K yielding a value of only 0.14W· m−1 · K−1 in vacuum.  相似文献   

13.
The theory is given, with an analysis and various examples, of the practical implementation of a method for measuring the relative permittivity ɛ*=ɛ′−iɛ″ of materials in the 0.5–26-GHz frequency range. The results and experimental errors are given of measurements of ε′ in the range 2–200 and of tanδ in the range from 5·10−5 to 2·10−2. Translated from Izmeritel'naya Tekhnika, No. 6, pp. 62–66, June, 1999.  相似文献   

14.
It is found that the hysteresis that develops with decreasing temperature in the current-voltage characteristics of thin-film YBa2Cu3O7−x microbridges is due to superheating of the bridges by the transport current. The heat transport coefficient is determined to be α=5500–7500 V/(cm2·K) and the thermal resistance of the YBa2Cu3O7−x /MgO film-substrate interface is R if=(1.3–1.8)×10−4 (cm2·K)/W. Pis’ma Zh. Tekh. Fiz. 23, 56–62 (June 26, 1997)  相似文献   

15.
Cadmium ferrite, CdFe2O4, is synthesized by urea combustion method followed by calcination at 900°C and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED) techniques. The Li-storage and cycling behaviour are examined by galvanostatic cycling, cyclic voltammetry (CV) and impedance spectroscopy in the voltage range, 0·005–3·0 V vs Li at room temperature. CdFe2O4 shows a first cycle reversible capacity of 870 (± 10) mAhg−1 at 0·07C-rate, but the capacity degrades at 4 mAhg−1 per cycle and retains only 680 (± 10) mAhg−1 after 50 cycles. Heat-treated electrode of CdFe2O4 (300°C; 12 h, Ar) shows a significantly improved cycling performance under the above cycling conditions and a stable capacity of 810 (± 10) mAhg−1 corresponding to 8·7 moles of Li per mole of CdFe2O4 (vs theoretical, 9·0 moles of Li) is maintained up to 60 cycles, with a coulombic efficiency, 96–98%. Rate capability of heat-treated CdFe2O4 is also good: reversible capacities of 650 (± 10) and 450 (± 10) mAhg−1 at 0·5 C and 1·4 C (1 C = 840 mAg−1) are observed, respectively. The reasons for the improved cycling performance are discussed. From the CV data in 2–15 cycles, the average discharge potential is measured to be ∼0·9 V, whereas the charge potential is ∼2·1 V. Based on the galvanostatic and CV data, ex situ-XRD, -TEM and -SAED studies, a reaction mechanism is proposed. The impedance parameters as a function of voltage during the 1st cycle have been evaluated and interpreted. Dedicated to Prof. C N R Rao on his 75th birthday, and his contributions to science for the past 56 years  相似文献   

16.
ZnS thin films of different thicknesses were prepared by chemical bath deposition using thiourea and zinc acetate as S2− and Zn2+ source. The effect of film thickness on the optical and structural properties was studied. The optical absorption studies in the wavelength range 250–750 nm show that band gap energy of ZnS increases from 3·68–4·10 eV as thickness varied from 332–76 nm. The structural estimation shows variation in grain size from 6·9–17·8 nm with thickness. The thermoemf measurement indicates that films prepared by this method are of n-type.  相似文献   

17.
Plastic waste/fly ash composite, which is made mostly from plastic waste and fly ash, is one of the materials developed for the purpose of recycling. Currently, the composite is used for cable troughs shielding underground lines. However, there exists little information concerning the thermophysical properties of the composite. Thermophysical properties and the structure of the composite must be determined to estimate the heat transfer in the composite and create the different proportions of the composite material. This article deals with measurements of the specific heat of the plastic waste/fly ash composite and its components using a differential scanning calorimeter. The composite sample, which ranged from 10 mg to 19 mg in mass, was cut from a cable trough. The standard reference material is synthetic sapphire disks of 19.6 mg and 29.6 mg in mass. The specific heat of the plastic waste/fly ash composite increases from 1.25 kJ · kg−1 · K−1 to 1.59 kJ · kg−1 · K−1 at temperatures from 305 K to 360 K. The uncertainty for the specific heat data of the composite is estimated to be about 4 %. In addition, the specific heat value depends heavily on the content of the plastic waste.  相似文献   

18.
The thermal effusivity of drop-size liquids was measured by the pulse transient hot-strip technique. A strip sensor, used as a thermometer and heat source, is deposited on a smooth surface of an electrically insulating background material – onto which an insulating liquid sample is applied, completely covering the strip probe. Experiments can be made controlling the thermal penetration depth to within some 10 μm of the liquid sample – here demonstrated by measuring a drop of water at about 1% uncertainty. Measurements were made on water and a series of silicone oils (kinematic viscosity from 5 to 50 cSt; 1 cSt = 10−6 m2· s−1) in microgravity conditions using a 10 m drop tower (10−3 g, 1.4 s), to investigate if any potential natural convection in the liquid at normal gravity condition is present, influencing the results. However, no such influence was observed. Paper presented at the Fifteenth Symposium on Thermophysical Properties, June 22–27, 2003, Boulder, Colorado, U.S.A.  相似文献   

19.
A scale converter designed at the D. I. Mendeleev Institute of Metrology is described, which, together with the equipment of the State volt unit, makes it possible to reproduce the size of the emf unit, the volt, over an extended range of voltages (up to 10 V) with errors σA=7.2·10-9 and σB=5.6·10-9. Translated from Izmeritel'naya Tekhnika, No. 4, pp. 41–42, April, 1998.  相似文献   

20.
By the methods of thermal-desorption spectrometry and nuclear reactions, we study the processes of trapping, thermal desorption, and evolution of the profiles of distribution of deuterium ionically implanted with an energy of 12 keV into Kh18N10T steel at room temperature. The evolution of the microstructure of steel under the conditions of irradiation of samples with D2+ ions up to doses of 1 · 1018 D/m2−2 · 1022 D/m2 is studied by the method of electron microscopy. The regularities of changes in the mechanical properties of steel after irradiation are determined. __________ Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 43, No. 5, pp. 117–121, September–October, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号