首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
两流程2×2棒束超临界水传热实验研究   总被引:1,自引:0,他引:1  
为支持欧盟2×2燃料组件入堆考核实验,开展了2×2棒束内超临界水传热实验研究。设计了两流程实验段,两流程之间通过矩形金属框隔离。2×2加热棒束通过定位格架安装在金属框中,超临界水通过第1流程向下流动然后进入第2流程冷却加热棒,第1流程通过金属框吸收第2流程流体的热量而温度升高。在2×2棒束横截面上存在明显的周向温度分布不均匀性。系统分析了实验参数包括质量流速、热流密度和实验压力对棒束平均换热系数的影响。结果表明,系统参数对棒束传热的影响规律与对单管和环管的一致。  相似文献   

2.
含绕丝2×2棒束内超临界水传热试验研究   总被引:1,自引:1,他引:0  
以超临界水冷堆燃料性能验证试验为背景,对带有螺旋绕丝的2×2棒束内超临界水的传热特性进行了试验研究。试验参数范围为:压力23~28 MPa,质量流速400~1 000 kg/(m2•s),壁面热流密度200~1 000 kW/m2。通过试验,获得了加热管周向壁温的分布规律,并分析了热流密度、质量流速、压力、螺旋绕丝对壁温和换热系数的影响。研究结果表明,加热管周向壁温呈现非均匀、非对称分布的特性,最高壁温出现在边角子通道或螺旋绕丝覆盖的位置。在拟临界区,换热系数随热流密度的升高或质量流速的降低而迅速减小,而随压力的变化较微弱。相对于光滑2×2棒束,螺旋绕丝不仅改变了周向壁温分布规律,同时也提高了平均换热系数。  相似文献   

3.
Laltu  Chandra  Jan-Aiso  Lycklama  a  Nijeholtl  Dirk  C.  Visser  文青龙 《国外核动力》2010,31(2):47-54
高性能轻水反应堆(HPLWR)采用超临界水(SCW)作为冷却剂。在临界和拟临界点附近,这类超临界流体的热物性将遭受剧烈的变化,文献[1】和【2】报道了此类流体而致的正常传热、强化传热和传热恶化。大量的数值研究已经证明了以CFD方法为基础的雷诺平均纳维斯托克斯(RANS)在计算超临界二氧化碳(SC—CO2)和超临界水(SCW)热输运方面的能力。本文描述了绕丝对SC—CO2传热的影响。第一步,本文选取不带绕丝的环形通道内的SC—CO2流动作为研究对象,韩国原子能研究院(KAERI)曾在某次实验中采用过此类实验本体。质量流密度为400kg/m2、内管或棒热流密度为120kW/m2下的计算发现局部非常高的内壁温度,这种现象的出现可能是受到传热恶化的影响。第二步,在出现传热恶化的区域,有意识地在环形通道内圆柱体外表面引入正方形和半圆环形丝或障碍物。分析表明,通过增强环形障碍物后部的湍流生成,传热恶化现象得到了一定程度的缓解。尽管如此,研究还发现环形障碍物的形状对传热恶化的前部区域几乎没有影响。最后,分析了环形窄缝通道内圆柱螺旋绕丝对传热恶化的影响,结果表明,螺旋绕丝极大程度地缓解了传热恶化的影响。与光滑棒体相比,螺旋绕丝对强化传热的积极影响应归结于较高的湍动能生成,这也可以通过对燃料棒计算流线的分析推断得到,由此表明了绕丝对沿丝流动的扫掠效应。  相似文献   

4.
为准确预测钠冷快堆堆芯三维热工水力参数分布同时降低计算资源需求,基于表征体元概念建立了针对绕丝棒束组件的三维多孔介质模型,根据组件几何结构特点将冷却剂与固体壁面间的相互作用力分解为分布式阻力,引入包含湍流搅混传热、流体导热和燃料棒导热的有效传热系数模型刻画组件的径向传热。采用日本东芝公司核能工程实验室37棒液态钠冷却绕丝棒束组件实验进行模拟计算,数值计算结果与实验结果对比发现,基于论文提出的多孔介质模型可以在多种工况下较好地复现实验结果。因此,本研究提出的多孔介质模型可用于钠冷快堆绕丝棒束组件三维热工水力参数分布预测。  相似文献   

5.
低雷诺数(Re)流动存在于正常运行或事故停堆工况的各类组件中,对于快堆的安全运行具有重要意义。利用CFX程序对低Re下的中国实验快堆不同类型的带绕丝棒束组件的水力特性进行了分析。结果表明,通过利用1个螺距的带绕丝棒束组件计算得到的低Re下的水力特性与实验结果以及Engel关系式符合较好。通过利用4个螺距的带绕丝棒束组件计算结果表明,绕丝产生的横向流动使组件6个壁面上压力分布有所不同,但在流动充分发展时,每个面轴线方向的压降按螺距均匀分布,从而进行带绕丝棒束组件水力特性测量时,需在组件同一面上按照整数倍螺距来布置测点,才能避免由于横向流动对测量带来的影响。  相似文献   

6.
低雷诺数(Re)流动存在于正常运行或事故停堆工况的各类组件中,对于快堆的安全运行具有重要意义。利用CFX程序对低Re下的中国实验快堆不同类型的带绕丝棒束组件的水力特性进行了分析。结果表明,通过利用1个螺距的带绕丝棒束组件计算得到的低Re下的水力特性与实验结果以及Engel关系式符合较好。通过利用4个螺距的带绕丝棒束组件计算结果表明,绕丝产生的横向流动使组件6个壁面上压力分布有所不同,但在流动充分发展时,每个面轴线方向的压降按螺距均匀分布,从而进行带绕丝棒束组件水力特性测量时,需在组件同一面上按照整数倍螺距来布置测点,才能避免由于横向流动对测量带来的影响。  相似文献   

7.
以中国超临界水冷堆(CSR1000)燃料组件研发为研究背景,采用实验辅以理论分析的方法,开展2×2棒束结构内超临界水工质的传热特性研究。实验工况范围为:压力(P)23~25 MPa;质量流速(G)680~1400 kg/(m2?s);热流密度(q)174~968 kW/m2。实验结果表明,随着q的增加、G的减小,2×2棒束的传热性能减弱;随着P从23 MPa变化到25 MPa,2×2棒束的传热性能变化微弱; 2×2棒束内超临界水的传热特性既与边界层和主流的物性差异程度有关,又受流道各子通道之间的流动传热不均匀性影响;基于实验数据进行多元线性回归分析,获得2×2棒束内超临界水换热关系式,约88.9%的实验数据与该换热关系式的计算值偏差范围在±25%内。   相似文献   

8.
快堆燃料组件棒束通道内流动和传热现象分析与研究   总被引:3,自引:3,他引:0  
利用三维计算流体力学软件CFX 12.0对由7根带螺旋状定位绕丝的燃料棒组成的快堆燃料组件典型棒束通道内的流动和传热现象进行了数值模拟。模拟得到不同Re下的压降系数曲线与Nu曲线,并将计算结果与经验公式的计算结果进行了比较,两者符合较好。研究了组件内3类典型子通道的横向流交混效应,分析了3类典型子通道的横向流分布特点,发现角子通道横向流交混强度沿轴向波动较大,而3类子通道的横向流交混强度均存在周期性。研究了中心燃料棒壁面上3个截面的局部换热效应,发现在燃料棒与绕丝接触处传热效果最差,在事故分析时应重点关注。  相似文献   

9.
钠冷快堆在事故停堆余热排放期间,堆芯组件内钠流为自然循环流动,流速很低,因此准确确定绕丝棒束组件低流速时的摩擦阻力系数对钠冷快堆非能动余热排出系统的设计具有重要意义。本文以水为流动介质,准确测量了37棒和19棒绕丝棒束组件在低流速(Re<1 000)时的摩擦阻力系数。实验结果表明,随着流速的降低,绕丝棒束组件的摩擦阻力系数迅速升高,流动从层流向过渡流转变时,摩擦阻力系数有明显跃升。将实验测量值与绕丝棒束摩擦阻力系数经验公式的计算结果进行比较,发现在低流速时,经验公式计算结果较实验测量值明显偏小,同时经验公式计算的绕丝棒束层流向过渡流转变的临界Re较实验值偏大。  相似文献   

10.
超临界水冷堆燃料组件多采用稠密栅格布置,用绕丝进行定位,绕丝可增强通道间的交混能力,对通道的换热特征会产生明显影响。以含绕丝的小棒束2×2组件为分析对象,采用计算流体动力学(CFD)方法分析超临界条件下绕丝对换热特征的影响。分析结果表明:绕丝会改善通道的换热能力,抑制周向不均匀分布,但也可能在局部产生壁温峰值。在数值计算中发现壁温峰值的成因有两类,并对二者的成因进一步叙述,分析绕丝结构参数对换热特性的影响。  相似文献   

11.
针对格架下游传热问题,开展了格架对5×5棒束通道中传热影响的实验研究,实验Re约为1000~30000,浮升力参数Bo*为2×10-7~3×10-3。观察实验结果发现,格架下游传热与浮升力参数存在较强关联,当浮升力参数较大时,格架下游传热较复杂,且不同于人们以往对格架下游传热的认识。通过对实验数据分析,提出了新的预测格架下游传热的经验关系式,此关系式考虑了浮升力对格架下游传热的影响,且能较好地对格架下游传热进行预测。  相似文献   

12.
燃料棒束作为压水堆燃料组件的组成部分,其热工和结构特性直接关系到反应堆的安全。本文利用ANSYS WORKBENCH软件分析了冷却剂在5×5含定位格架燃料棒束通道内流动的分布,采用冷却剂与燃料棒束多场耦合的方式研究了燃料棒束的流动传热特性和结构形变特性。结果表明:定位格架扰动冷却剂形成横向二次流并在下游棒束间形成绕流;多场耦合条件下二次流峰值速度和平均速度均小于单流场的;二次流与燃料棒的热应力使棒束发生形变,功率和流动分布的不均匀导致形变在轴向和径向的不均匀;相较于无格架情况,定位格架的存在使冷却剂的搅混流动更加明显,冷却剂对燃料棒冲击增大;在有、无定位格架两种情况下棒束形变均很小,可保持原本结构的稳定。  相似文献   

13.
由于铅铋冷却剂流动传热现象的复杂性,准确计算铅铋冷却含绕丝燃料组件的冷却剂和包壳温度是液态金属冷却快堆燃料组件热工分析的重点。本文基于集总参数法对守恒方程进行求解,开发了适用于铅铋冷却快堆的子通道分析程序,对液态铅铋在棒束燃料组件中的摩擦阻力模型、湍流交混模型和对流换热模型进行了适用性分析,并对7棒束大涡模拟和19棒束含绕丝传热实验进行了对比验证。结果表明:包壳和冷却剂温度的最大相对误差低于5%。程序能较好完成铅铋冷却含绕丝燃料组件的热工水力计算,可为铅铋冷却快堆设计提供支持。  相似文献   

14.
吴刚  潘杰  毕勤成  王汉 《原子能科学技术》2016,50(10):1756-1762
在压力p=23~28 MPa、质量流速G=350~1 000 kg/(m2•s)、热流密度q=200~1000 kW/m2的试验参数范围内,对2×2棒束内超临界水的传热特性进行了试验研究。试验得到了加热管周向壁温分布规律,并就出现周向温度差异的原因进行了分析。此外,给出了压力、质量流速及热流密度等系统参数对平均传热特性的影响,分析了低质量流速下出现的传热恶化现象。试验结果表明:加热管周向壁温并不均匀,边角子通道壁温最高,中心子通道壁温最低,周向壁温的高低与横截面流通面积的不均匀性紧密相关。随着热流密度的提高或质量流速的降低,超临界水的传热受到抑制,当q/G增大到一定程度时,棒束内发生传热恶化。  相似文献   

15.
为获得稠密布置燃料组件的阻力系数,应用稠密带缠绕丝棒束进行实验研究,拟合阻力系数关系式,并将关系式与经典Rehme关系式进行比较分析。结果表明Rehme关系式不适用于本实验棒束。同时应用计算流体力学(CFD)方法、剪切应力输运模型(SST)湍流模型对实验进行模拟,获得棒束内部的流动形式、压力场和沿程阻力系数,并与实验结果进行对比。结果表明CFD方法可作为预测稠密带缠绕丝棒束单相流动阻力系数的参考。  相似文献   

16.
紧密栅元内的流体流动传热研究对高转化比反应堆燃料组件的优化有十分重要的意义。本文采用CFD方法对7棒束紧密栅元棒束通道内流体流动传热现象进行了数值模拟,并与7棒束紧密栅元内氟利昂流体传热的实验结果进行对比分析,详细分析了定位格架对棒束内流体传热流动的影响。结果表明:数值计算所得的非加热棒的壁面温度和实验吻合良好,定位格架的存在对其下游流体流动、棒束最高温度分布及交混系数有明显的影响,棒束某些位置因流动滞止导致温度大幅上升,在设计中应加以注意。  相似文献   

17.
棒束内超临界水传热实验研究   总被引:2,自引:2,他引:0  
在中国广核集团有限公司和上海交通大学共建的超临界水多功能实验装置上,针对两种不同节径比(P/D)的棒束通道开展了超临界水流动传热实验,获得了传热实验数据,观测到了通道内棒束间明显的周向温度不均匀现象和定位格架导致的传热强化现象。通过对各种热工水力参数的实验研究,得出超临界水流动传热结论:随热流密度的增加,传热系数逐渐减小,棒束壁温周向不均匀程度逐渐增加;随质量流速的增加,传热系数逐渐增大,棒束壁温周向不均匀程度逐渐减小;随压力的逐渐升高,传热系数少许降低;随P/D的减小,棒束通道内的传热明显增强。  相似文献   

18.
螺旋绕丝是第4代先进核反应堆燃料组件的定位装置之一,冷却剂在绕丝作用下发生定向交混和周期性横流,是影响燃料元件包壳温度的重要因素,有必要进行深入研究。本文采用粒子图像测速法对含绕丝7棒束内水的横向流动进行实验测量,得到了横截面整体速度分布和局部流动特性,并利用STAR CCM+软件进行了稳态数值模拟,分析了无量纲横向流速的变化规律。结果表明,棒束内存在整体环流和若干局部涡流,大尺度涡出现在棒和内壁附近,小尺度涡出现在棒和绕丝附近。随着雷诺数的增大,横向流动规律基本一致,但速度大小呈线性增长趋势。湍流模型敏感性分析表明,雷诺应力-椭圆混合模型对流场的预测与实验数据最为接近。横向流动具有明显的周期性,对于所选定的棒束结构,最大横向流速约为轴向流速的25%,且在绕丝经过棒间隙时出现突变。  相似文献   

19.
铅铋冷却快堆作为第4代反应堆候选之一具有安全性高等特点,研究其在正常工况下的热工水力特性具有重要意义。本文基于商用计算流体力学(CFD)软件STAR-CCM+,使用流固耦合的方法对带有绕丝结构的19棒束铅铋组件进行数值分析,探究了质量流量、功率等边界条件对组件内部流动传热特性的影响。模拟计算结果表明:CFD方法在子通道中心温度和壁面温度预测上与实验结果取得了较好的一致。同时,绕丝结构的存在使得子通道之间存在周期性的横向交混,并使得棒束表面温度呈现震荡。随质量流量的增加,子通道间横向交混增大。功率变化对通道间的横向交混速度的影响较小,冷却剂温度的横向分布无明显差异。  相似文献   

20.
在超临界水多功能实验装置上开展了三角布置棒束内超临界水流动传热实验研究,通过实验观测到了通道内棒束周向温度分布不均匀现象和定位格架导致的传热强化现象,获得不同热流密度、质量流量及压力范围内的传热实验数据,拟合得到预测偏差为±15%的三角布置棒束超临界水传热关系式。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号