首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
压水堆主回路冷却剂流经堆芯时,水中固有及特加核素受中子辐照后会产生氚,氚几乎全部以气体和液体的形式排入环境,造成氚污染。因此,氚是压水堆辐射环境影响评价的主要关注内容之一。本文以AP1000为例,根据压水堆主回路冷却剂中氚的产生途径及其随时间的变化情况建立详细的计算模型,计算压水堆主回路冷却剂中的氚活度并分析各产氚途径对氚产生量的贡献。计算结果表明:主回路冷却剂中的氚主要来源于可溶性硼的中子活化和铀裂变,对氚产生量的贡献达80%以上;在7Li纯度为99.9%时,AP1000主回路中的年产氚量为5.23×1013 Bq,锂产氚量占总量的14.01%,随7Li纯度的增加,锂产氚量的贡献呈线性减小,在7Li纯度为99.99%时,锂产氚量占总量的3.18%。其他途径对氚的产生量贡献很小,可忽略。根据以上结果,可通过控制主回路冷却剂中添加的初始硼浓度、提高燃料包壳质量、增加LiOH中7Li的纯度等多种途径来降低主冷却剂中氚的产生量,从而减少氚对环境的放射性污染。  相似文献   

2.
压水堆核电厂尤其是内陆核电厂的氚排放一直备受关注。目前关于压水堆产氚的计算分析通常以一回路冷却剂系统作为氚活度衡算边界,系统设计对氚排放量的影响少有讨论。本文将氚活度衡算边界从一回路扩展到反应堆冷却剂净化和复用系统,考察了一回路氚比活度控制值、反应堆冷却剂净化复用系统水装量和不复用排放水量等三个系统设计参数之间的关系和它们对压水堆氚排放量的影响。经分析发现,通过提高一回路氚比活度控制值和增加净化复用系统水装量,可显著降低氚排放量。基于现有的核电厂设计,若将一回路氚比活度控制值从15 000 MBq·t-1提高到44 000 MBq·t-1,氚排放量设计值可以降低3%~13%,若进一步增加复用系统水装量到10 000 t,氚排放量设计值可降低46%。  相似文献   

3.
本文阐述了压水堆中14C的主要产生机理,利用蒙特卡罗程序MCNP5建立了精确的三维堆芯模型,计算了堆芯各辐照区的47群中子注量率,计算得到一回路冷却剂、燃料芯块和包壳及堆芯上下反射层的14C产生率和年产生量。结果表明,计算模型、参数及计算假设具有一定的代表性,计算结果适用于CPR1000型压水堆核电机组。  相似文献   

4.
氚是核电站运行过程中向环境中排放较大的放射性核素之一,控制核设施中氚的产生和排放量越来越引起人们的重视。本文通过分析核电站产生氚的主要途径,建立了5种产氚途径的7个计算模型,并对计算模型中重要参数的灵敏度进行了分析。结果表明:在计算氚的产生量时,参数的灵敏度依次是~7Li所占百分比、等效满功率天数、初始锂浓度、氚从可燃毒物棒中释放到主冷却剂中份额、氚从燃料释放到冷却剂中份额;~7Li所占百分比对氚的产生量特别灵敏,等效满功率天数对所有途径的产氚量都有影响。  相似文献   

5.
压水堆核电厂一回路冷却剂中的部分氚会通过废液和废气排放系统排放至工作环境中。本文报道某压水堆核电厂辐射控制区气态氚的监测结果:运行期间气态氚浓度范围为<LLD~9.21×102 Bq/m3;大修期间为<LLD~3.14×103 Bq/m3。监测结果显示,压水堆核电厂运行初期工作环境中氚浓度较低,工作人员在现场工作无需采取额外的防护措施以及进行氚内照射剂量监测。  相似文献   

6.
采用中心波长固定的可调谐外腔半导体激光器作为光源,通过激光吸收光谱法对锂原子同位素比率进行测量。该方法利用PID温控器实现锂金属蒸发温度的控制和测量。采用激光斜入射的方式消除光路调试过程中产生的标准具效应。实验测量给出了6组不同腔体温度下6Li和7Li在671 nm附近的吸收光谱,通过对6LiD17LiD2吸收峰进行积分吸收计算,得到6Li/7Li同位素比率测量精度可达2.5%。  相似文献   

7.
根据氚在反应堆一回路系统的产生和消减过程,建立氚源计算模型,采用保守计算方法和基于硼锂协调曲线的计算方法,对比硼、锂产氚量的差异,并分析释放份额、初始硼浓度、硼去除率、初始锂浓度对一回路氚源计算的影响。结果表明:两种计算方法对硼、锂产氚量的影响很大,保守方法和基于硼锂协调曲线的计算方法得到的硼、锂产氚量比值分别为1.39和2.04。氚活度随释放份额、初始硼浓度、锂浓度的增大而增大,随硼去除率的增大而减小。  相似文献   

8.
压水堆核电机组使用的二次中子源存在破损风险,反应堆功率运行工况下无法对二次中子源的状态进行物理检查。根据二次中子源的活化特性将122Sb和124Sb作为诊断二次中子源破损的特征核素,对使用一回路冷却剂的γ放射性在线监测数据、一回路冷却剂中122Sb和124Sb的比活度诊断二次中子源破损的方法可行性进行了分析,设计了二次中子源破损诊断流程,并使用上述诊断方法对二代改进型1000 MW级压水堆核电机组二次中子源破损问题进行了诊断。验证结果表明,二次中子源破损后一回路冷却剂取样分析得出的122Sb和124Sb比活度变化趋势与核辐射监测设备监测到的一回路冷却剂γ放射性变化趋势在总体上吻合。因此,本研究提出的二次中子源破损诊断方法是有效的。  相似文献   

9.
为研究金属有机骨架材料对7Li的吸附分离性能,本研以水作为溶剂,四氯化锆和均苯四甲酸为起始原料,采用水热法合成金属有机骨架材料UiO-66-(COOH)2,对合成材料的形貌、孔径、热稳定性等进行表征与分析;通过静态吸附实验探讨吸附时间、反应温度、溶液浓度对UiO-66-(COOH)2锂离子吸附性能及同位素分离因子的影响;并对Li+浓度、6Li/7Li同位素丰度进行测定。结果表明,UiO-66-(COOH)2可实现对锂的吸附以及7Li的分离,且在293 K Li2CO3溶液中,每0.05 g UiO-66-(COOH)2对10 mL 0.05 mol/L Li2CO3进行4 h的静态吸附,最大吸附量Q为9.53 mg/g,分离因子S(7Li/6Li)为1.019 54。研究结果为7Li的分离提供了新途径。  相似文献   

10.
研究核电厂中氚在堆芯和主冷却剂中的产生方式,以及进入环境的途径、形态和排放量,是核电厂辐射环境影响评价非常重要的内容之一。本文通过分析压水堆核电厂中的主冷却剂系统、辅助系统、三废系统和厂房通风系统的运行模式,结合国际上的运行经验参数,研究主冷却剂中的氚排放进入环境大气的途径和形态。研究结果表明:理论计算分析结果与电厂运行经验数据相吻合,氚主要通过燃料棒中的三元裂变,可燃毒物棒中硼的活化以及主冷却剂中硼、锂和氘流经堆芯时的活化产生,主要以液态氚水形式排放,影响气液两相分配份额的主要因素取决于主冷却剂向反应堆厂房和辅助厂房的泄漏率。  相似文献   

11.
氟盐冷却高温堆主冷却剂放射性源项研究   总被引:1,自引:1,他引:0  
针对氟盐冷却高温堆(FHR)正常运行时主冷却剂放射性源项进行了研究。对主回路源项主要贡献来源及产生原理进行了分析,基于三维蒙特卡罗输运程序KENOⅥ、燃耗分析模块ORIGEN-S及Mathematica程序,对堆芯中子能谱、堆芯源项及主回路源项扩散及活化进行了分析。应用该方法对FHR的一种设计堆型进行了定量分析,结果表明:主回路氚源项相对其他堆的较高,其产生率为5.16×1014 Bq·GWth~(-1)·d~(-1),应采取有效措施限制其向环境的释放。本文结果可为FHR的工程设计、辐射防护设计、氚源项控制、三废处理系统设计等提供参考。  相似文献   

12.
The release of fission products from coated particle fuel to primary coolant,as well as the activation of coolant and impurities,were analysed for a fluoride saltcooled high-temperature reactor (FHR) system,and the activity of radionuclides accumulated in the coolant during normal operation was calculated.The release rate (release fraction per unit time) of fission products was calculated with STACY code,which is modelled mainly based on the Fick's law,while the activation of coolant and impurities was calculated with SCALE code.The accumulation of radionuclides in the coolant has been calculated with a simplified model,which is generally a time integration considering the generation and decay of radionuclides.The results show that activation products are the dominant gamma source in the primary coolant system during normal operation of the FHR while fission products become the dominant source after shutdown.In operation condition,health-impacts related nuclides such as 3H,and 14C originate from the activation of lithium and coolant impurities including carbon,nitrogen,and oxygen.According to the calculated effective cross sections of neutron activation,6Li and 14N are the dominant 3H production source and 14C production source,respectively.Considering the high production rate,3H and 14C should be treated before being released to the environment.  相似文献   

13.
The release of fission products from coated particle fuel to primary coolant,as well as the activation of coolant and impurities,were analysed for a fluoride salt-cooled high-temperature reactor (FHR) system,and the activity of radionuclides accumulated in the coolant during normal operation was calculated.The release rate (release fraction per unit time) of fission products was calculated with STACY code,which is modelled mainly based on the Fick's law,while the activation of coolant and impurities was calculated with SCALE code.The accumulation of radionuclides in the coolant has been calculated with a simplified model,which is generally a time integration considering the generation and decay of radionuclides.The results show that activation products are the dominant gamma source in the primary coolant system during normal operation of the FHR while fission products become the dominant source after shutdown.In operation condition,health-impacts related nuclides such as 3H,and 14C originate from the activation of lithium and coolant impurities including carbon,nitrogen,and oxygen.According to the calculated effective cross sections of neutron activation,6Li and 14N are the dominant 3H production source and 14C production source,respectively.Considering the high production rate,3H and 14C should be treated before being released to the environment.  相似文献   

14.
In Korea, a nuclear hydrogen program has been established to develop and demonstrate mass production system for hydrogen generation. The objective of this study is to establish the evaluation procedure for predicting the tritium behavior in the 300 MWth Pebble type gas cooled reactor which is the one of the candidate reactors for nuclear hydrogen development and demonstration plant. The tritium generated by the fission reaction can be leaked to the helium coolant from the coated ceramic particles and fuel elements. The annual total release rate of the tritium is estimated as 0.47% from the fuel kernel to the helium coolant by the numerical method. Tritium attributed by 6Li existing as impurities in the reflector can be released to the helium coolant by the diffusion process and the total annual release rate of the tritium is estimated as 5.3% through the reflector to the helium coolant. Based on the Siverts' law, tritium permeation from the primary coolant to the hydrogen production system is also evaluated and the result is calculated as 76?0.23 Bq/g-H2 with respect to the PRF (Permeation Reduction Factor= 10?1000) in case of the normal operation of the 300 MWth Pebble type reactor.  相似文献   

15.
Neutronic calculations were performed to optimize the SENRI blanket in terms of energy multiplication as well as tritium breeding ratio. The blanket employs a thick ( 64-cm) Li layer as breeder/coolant. Three approaches were taken here to achieve the goal: (1) reduction of6Li in the lithium, (ii) replacement of the Li layer by a molten-salt (flibe) layer, and (iii) shipment of excess tritium to a nonbreeding blanket. It was found that the excess tritium produced in the SENRI blanket could be used effectively to obtain additional power by fueling a nonbreeding D-T reactor.  相似文献   

16.
Inelastic scattering of high energy fusion neutrons does affect the performance of fusion blanket based on the choice of different materials. It will also affect the behavior of source neutrons in a subcritical fusion fission hybrid blanket and consequently the transmutation and tritium breeding performance. A fusion fission hybrid test blanket module (HTBM) is designed which is presumed to be tested in a large sized tokamak and plasma neutron source is similar to ITER. In this preliminary design of HTBM the neutron source and loss factors are computed for the detailed neutronic performance analysis. The neutronic analysis of hybrid blanket module is performed for five different TRU fuel types: TRU-Zr, TRU-Mo, TRU-Oxide, TRU-Carbide and TRU-Nitride. In this module design, it is aimed to burn and transmute the TRU nuclides from high-level radioactive waste of PWR spent fuel. The effect of TiC reflector on transmutation and tritium breeding performance of HTBM is also quantified. MCNPX is used for neutronic computations. Neutron spectrum, capture to fission ratio and waste transmutation ratio of each fuel type are compared to evaluate their waste transmutation performance. Tritium breeding ratio is also compared for two coolant options: Li and LiPb eutectic.  相似文献   

17.
Selection of lithium containing materials is very important in the design of a deuterium–tritium (DT) fusion driven hybrid reactor in order to supply its tritium self-sufficiency. Tritium, an artificial isotope of hydrogen, can be produced in the blanket by using the neutron capture reactions of lithium in the coolants and/or blanket materials which consist of lithium. This study presents the effect of lithium-6 enrichment in the coolant of the reactor on the tritium breeding of the hybrid blanket. Various liquid–solid breeder couples were investigated to determine the effective breeders. Numerical results pointed out that the tritium production increased with increasing lithium-6 enrichment for all cases.  相似文献   

18.
《Fusion Engineering and Design》2014,89(7-8):1190-1194
The generation of tritium in sufficient quantities is an absolute requirement for a next step fusion device such as DEMO due to the scarcity of tritium sources. Although the production of sufficient quantities of tritium will be one of the main challenges for DEMO, within an energy economy featuring several fusion power plants the active control of tritium production may be required in order to manage surplus tritium inventories at power plant sites. The primary reason for controlling the tritium inventory in such an economy would therefore be to minimise the risk and storage costs associated with large quantities of surplus tritium. In order to ensure that enough tritium will be produced in a reactor which contains a solid tritium breeder, over the reactor's lifetime, the tritium breeding rate at the beginning of its lifetime is relatively high and reduces over time. This causes a large surplus tritium inventory to build up until approximately halfway through the lifetime of the blanket, when the inventory begins to decrease. This surplus tritium inventory could exceed several tens of kilograms of tritium, impacting on possible safety and licensing conditions that may exist.This paper describes a possible solution to the surplus tritium inventory problem that involves neutron poison injection into the coolant, which is managed with a tritium breeding controller. A simple PID controller and is used to manage the injection of the neutron absorbing compounds into the water coolant of a stratified blanket model, depending on the difference between the required tritium excess inventory and the measured tritium excess inventory. The compounds effectively reduce the amount of low energy neutrons available to react with lithium compounds, thus reducing the tritium breeding ratio. This controller reduces the amount of tritium being produced at the start of the reactor's lifetime and increases the rate of tritium production towards the end of its lifetime. Thus, a relatively stable tritium production level may be maintained, allowing the control system to minimize the stored tritium with obvious safety benefits. The FATI code (Fusion Activation and Transport Interface) will be used to perform the tritium breeding and controller calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号