共查询到20条相似文献,搜索用时 70 毫秒
1.
《核动力工程》2016,(5):63-67
在模块化小型反应堆非能动安全系统综合模拟实验装置上进行波动管小破口尺寸失水事故实验,研究波动管小破口失水事故过程中的热工水力现象和非能动安全系统运行特性。模块化小型反应堆发生失水事故后,压力平衡管和安注管线内流体的密度差可以驱动堆芯补水箱(CMT)内的冷流体注入反应堆压力容器,压力平衡管裸露后CMT安注流量出现波动;安注箱(ACC)的安注对事故初期的堆芯冷却效果显著;经自动卸压系统卸压后,内置换料水箱(IRWST)可以对堆芯进行持续稳定的安注和冷却。研究结果表明:波动管小破口失水事故中,非能动安注系统可以对堆芯进行有效注水,并带走堆芯衰变热量。 相似文献
2.
3.
4.
PWR冷管段1%小破口失水事故实验研究 总被引:1,自引:1,他引:0
在高压综合实验装置(HPITF)上进行核电厂反应堆一次系统冷管段小破口失水事故(SBLOCA)模拟实验,破口方向为冷管段底部,破口面积为1%(NSB-7工况)实验再现了核电厂发生小破口失水事故时的热工水力学现象,实验结果与RELAP5/MOD2分析程序的计算结果上比较,验证了该程序对小破口失水事故的分析能力。 相似文献
5.
小破口失水事故研究综述 总被引:2,自引:0,他引:2
对小破口失水事故(SBLOCA)及其研究状况进行了综述。描述了典型的压水堆和沸水堆小破口失水事故过程和破口位置、破口尺寸及反应堆冷却泵对失水过程的影响,对现有文献按实验和数值模拟两大类进行了归纳,给出了目前世界上用于小破口失水事故研究的主要设备,对小破口失水事故的研究进行了总结。 相似文献
6.
上空腔小破口失水事故模拟实验 总被引:4,自引:3,他引:1
文中给出了位于上空腔的中小尺寸接管破裂或安全阀意外开启引起的小破口失水事故的模拟实验研究情况。在实验中研究了系统压力,温度、空泡份额的变化和总失水量。总失水量约为初始装水量的20%。 相似文献
7.
8.
通过分析核电厂小破口失水事故(SBLOCA)处理过程中运行人员的行为可靠性,对主控室设计的人因工程特性作了分析评价。同时还根据分析结果提出了进一步提高运行人员行为可靠性的建议。 相似文献
9.
10.
ACR-700核电厂小破口失水事故分析 总被引:1,自引:0,他引:1
针对加拿大AECL最新推出的ACR-700先进重水堆核电厂设计,建立CATHENA MOD3.5d重水堆热工水力系统分析程序的分析模型,并用该程序进行小破口失水事故下热传输系统和反应堆热工水力瞬态特性分析.主要分析重水堆核电厂对应反应堆入口集管、热传输泵吸入段及反应堆出口集管3种不同破口位置的典型的最不利事故工况,确定了导致最不利事故后果的破口面积,并给出主要的计算分析结果. 相似文献
11.
12.
13.
AP1000核电厂采用非能动堆芯冷却系统来缓解小破口失水事故(SBLOCA),缓解事故的理念是流动冷却。RELAP5/MOD3.3程序适用于传统核电厂SBLOCA研究,对于非能动电厂SBLOCA研究的适用性需重新研究与评估。本工作基于非能动电厂小破口失水事故的分析,结合RELAP5/MOD3.3的结构与模型,对其进行评估和改进。为验证改进后的RELAP5/MOD3.3的适用性,以AP1000小破口失水事故的验证试验台架APEX-1000为模拟对象,分析模拟DBA-02、NRC-05事故工况。分析结果表明,改进后的RELAP5/MOD3.3的计算结果与试验数据符合较好。 相似文献
14.
与传统Zr包壳相比,SiC复合包壳具有更好的辐照稳定性、高温机械性能和抗氧化能力,可有效缓解事故进程,增加事故应对时间。在大破口失水事故工况下,SiC复合包壳会与低压高温水蒸气发生惰性氧化反应而持续损耗。SiC材料的惰性氧化反应分为两个过程:SiC抛物线型氧化过程和SiC表面氧化产生的SiO2的线性挥发过程。本文应用修正的Deal-Grove模型和传热/传质类比法研究SiC的抛物线型氧化速率和SiO2的线性挥发速率,并基于纯水蒸气环境下SiC氧化实验数据和SiO2线性挥发实验数据,获得了SiC抛物线型氧化速率常数模型和SiO2线性挥发速率常数模型。理论模型分析结果显示,在大破口失水事故后低压高温纯水蒸气氧化条件下,SiC材料的氧化速率常数较Zr合金低约2~3个数量级,导致SiC材料的损耗速率远低于传统Zr包壳的损耗速率。 相似文献
15.
16.
17.
压水堆核电站安全分析报告是核安全监管部门对其进行安全审查的重要文件,大破口失水事故是核电站运行的设计基准事故,是安全分析报告中的重要内容。本文使用RELAP5/MOD3.2进行压水堆冷管段大破口失水事故的计算,对比发现一回路冷管段发生双端断裂大破口时燃料元件包壳温度峰值(PCT)最高,且长时间维持在较高温度,此条件下反应堆最危险。计算结果表明,事故发生后,一回路压力迅速下降,堆芯冷却剂的流动性变差,导致堆芯裸露,燃料包壳温度又重新回升。通过安注系统和辅助给水系统等一系列动作,能保证燃料元件包壳温度不超过1204 ℃的限值。 相似文献
18.
19.