共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
分析了将浓水反渗透浓水回用于循环水场作为补水的可能性。针对浓水反渗透浓水的水质情况,进行了结垢倾向的计算。详细介绍了浓水反渗透浓水回用于循环水场作为补水的经验及效果。结果表明,广西地区浓水反渗透浓水回用作为循环水补水,不仅大大提高了水资源的利用率、降低了循环水场运行成本,同时降低了循环水的腐蚀速率,延长换热器的使用寿命。 相似文献
4.
5.
结合工程实例,对反渗透水处理系统进行了介绍;并对反渗透水处理中浓水调节系统进行了优化设计.通过对浓水排放系统中浓水调节管道和冲洗排放管道的优化设计,使反渗透水处理大型膜系统能在较短的时间内达到正常运行和产水要求.同时节水、节能,缩短调节时间,具有工程实践参考作用. 相似文献
6.
7.
《应用化工》2022,(12)
采用活性炭吸附法去除反渗透浓水中的有机物,减轻后续处理的负荷,考察了活性炭的种类、停留时间、活性炭投加量以及pH对COD去除率的影响。结果表明,采用2#活性炭为吸附剂,进水pH=6,400 mL水,停留时间30 min,活性炭投加量1.5 g时,COD去除率达61.8%,采用动态吸附并应用到现场试验中,吸附塔装填2#活性炭40 t,进水量100 m3/h,平均COD 142 mg/L,pH=8.04,停留时间36 min,当出水COD<60 mg/L,活性炭的处理量可达1 330 m3/h,平均COD 142 mg/L,pH=8.04,停留时间36 min,当出水COD<60 mg/L,活性炭的处理量可达1 330 m3/t。 相似文献
8.
采用Fenton试剂氧化与生化耦合技术处理某化纤企业的RO浓水,考察了各因素对Fenton氧化过程的影响,并用SBR法对Fenton氧化出水做进一步的生化处理。结果表明,用Fenton试剂氧化RO浓水的适宜条件为:pH=3.5、n(H_2O_2)∶n(Fe~(2+))=5∶1、H_2O_2(30%)用量1 mL/L、反应时间120~180 min,耦合处理后,RO浓水COD由180 mg/L降到50 mg/L以下,达到了《城镇污水处理厂污染物排放标准》(GB 18918—2002)一级A标准。 相似文献
9.
10.
11.
12.
13.
采用电吸附法对反渗透浓水进行处理,先研究了不同盐含量、电压、流量、初始pH等因素对NaCl模拟水去除效果的影响,得出适宜参数,再分别通过单级和多级电吸附法处理反渗透浓水,分析脱盐效果。结果表明,NaCl模拟水在初始电导率为2 mS/cm时,pH为7.56、电压1.8 V、体积流量10 mL/min时处理效果最优,单级脱盐率达到17.18%;反渗透浓水在初始电导率为2 mS/cm时,以pH为7.17、电压为1.8 V、体积流量为10 mL/min时处理,单级脱盐率达到15.86%,经过3级处理后脱盐率达到了46.02%。 相似文献
14.
在环保理念的影响下,反渗透技术可以切实满足浓盐水处理要求,能够提升反渗透浓盐水的处理效率。因此在进行环保水处理的过程中,应该规范开展环保水处理工作,加强对反渗透浓盐水处理的关注度,从而全面提升浓盐水处理效果。基于此,分析了反渗透技术的原理和应用,并探讨了反渗透浓盐水的处理工艺。 相似文献
15.
16.
17.
18.
以活性炭为主的吸附材料在面对工业尾水时对不同种类有机污染物的吸附存在一定的差异并难以彻底去除。实验通过粉末活性炭(PAC)对焦化反渗透浓水(ROC)的吸附过程进行解析,结果表明,PAC的吸附选择性主要基于两个方面的因素:一方面,十四烷、角鲨烯等部分长链有机物的分子直径大于PAC的最佳吸附孔径(0.5~1 nm),因此难以得到有效去除;另一方面,有机物对PAC表面大量含氧官能团的相互竞争以及PAC表面含氮官能团的缺少,使得苯酚类有机物与PAC之间的相互作用降低。从PAC对ROC的吸附过程来看,吸附启动阶段PAC主要依靠孔道通过物理作用吸附芳香类有机物,而在吸附中期则依靠表面官能团与有机物的相互作用吸附烷烃、烯烃等非芳香族有机物,整体吸附过程更符合拟二级动力学和Freundlich等温模型。 相似文献
19.
《应用化工》2022,(2):368-372
对比分析了Fenton氧化、O_3/H_2O_2氧化和电化学氧化对煤化工反渗透浓水的处理特性。结果表明,Fenton氧化最佳反应条件为:m(H_2O_2)∶m(COD)=1.5,n(Fe(2+))∶n(H_2O_2)=0.4,反应时间为60 min;O_3/H_2O_2氧化最佳反应条件为:臭氧气体流量为200 mL/min,m(H_2O_2)∶m(COD)=2,反应时间为80 min;电化学氧化最佳反应条件为:电流强度1 A,反应时间60 min。在上述反应条件下,Fenton氧化、O_3/H_2O_2氧化和电化学氧化对煤化工反渗透浓水的COD去除率分别为46.2%,63.5%和66.4%,并从处理效果、处理成本、投资、操作难易、有无二次污染等方面对这3种高级氧化技术进行比较,确定出O_3/H_2O_2氧化为最适宜的工艺。 相似文献
20.