首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Given a “black box” function to evaluate an unknown rational polynomial f ? \mathbbQ[x]f \in {\mathbb{Q}}[x] at points modulo a prime p, we exhibit algorithms to compute the representation of the polynomial in the sparsest shifted power basis. That is, we determine the sparsity $t \in {\mathbb{Z}}_{>0}$t \in {\mathbb{Z}}_{>0}, the shift a ? \mathbbQ\alpha \in {\mathbb{Q}}, the exponents 0 £ e1 < e2 < ? < et{0 \leq e_{1} < e_{2} < \cdots < e_{t}}, and the coefficients c1, ?, ct ? \mathbbQ \{0}c_{1}, \ldots , c_{t} \in {\mathbb{Q}} \setminus \{0\} such that
f(x) = c1(x-a)e1+c2(x-a)e2+ ?+ct(x-a)etf(x) = c_{1}(x-\alpha)^{e_{1}}+c_{2}(x-\alpha)^{e_{2}}+ \cdots +c_{t}(x-\alpha)^{e_{t}}  相似文献   

2.
The Deutsch–Jozsa problem is one of the most basic ways to demonstrate the power of quantum computation. Consider a Boolean function f : {0, 1} n → {0, 1} and suppose we have a black-box to compute f. The Deutsch–Jozsa problem is to determine if f is constant (i.e. f(x) = const, "x ? {0,1}nf(x) = \hbox {const, } \forall x \in \{0,1\}^n) or if f is balanced (i.e. f(x) = 0 for exactly half the possible input strings x ? {0,1}nx \in \{0,1\}^n) using as few calls to the black-box computing f as is possible, assuming f is guaranteed to be constant or balanced. Classically it appears that this requires at least 2 n−1 + 1 black-box calls in the worst case, but the well known quantum solution solves the problem with probability one in exactly one black-box call. It has been found that in some cases the algorithm can be de-quantised into an equivalent classical, deterministic solution. We explore the ability to extend this de-quantisation to further cases, and examine with more detail when de-quantisation is possible, both with respect to the Deutsch–Jozsa problem, as well as in more general cases.  相似文献   

3.
Complexity of Hard-Core Set Proofs   总被引:1,自引:1,他引:0  
We study a fundamental result of Impagliazzo (FOCS’95) known as the hard-core set lemma. Consider any function f:{0,1}n?{0,1}{f:\{0,1\}^n\to\{0,1\}} which is “mildly hard”, in the sense that any circuit of size s must disagree with f on at least a δ fraction of inputs. Then, the hard-core set lemma says that f must have a hard-core set H of density δ on which it is “extremely hard”, in the sense that any circuit of size s¢=O(s/(\frac1e2log(\frac1ed))){s'=O(s/(\frac{1}{\epsilon^2}\log(\frac{1}{\epsilon\delta})))} must disagree with f on at least (1-e)/2{(1-\epsilon)/2} fraction of inputs from H.  相似文献   

4.
We prove that the concept class of disjunctions cannot be pointwise approximated by linear combinations of any small set of arbitrary real-valued functions. That is, suppose that there exist functions f1, ?, fr\phi_{1}, \ldots , \phi_{r} : {− 1, 1}n → \mathbbR{\mathbb{R}} with the property that every disjunction f on n variables has $\|f - \sum\nolimits_{i=1}^{r} \alpha_{i}\phi _{i}\|_{\infty}\leq 1/3$\|f - \sum\nolimits_{i=1}^{r} \alpha_{i}\phi _{i}\|_{\infty}\leq 1/3 for some reals a1, ?, ar\alpha_{1}, \ldots , \alpha_{r}. We prove that then $r \geq exp \{\Omega(\sqrt{n})\}$r \geq exp \{\Omega(\sqrt{n})\}, which is tight. We prove an incomparable lower bound for the concept class of decision lists. For the concept class of majority functions, we obtain a lower bound of W(2n/n)\Omega(2^{n}/n) , which almost meets the trivial upper bound of 2n for any concept class. These lower bounds substantially strengthen and generalize the polynomial approximation lower bounds of Paturi (1992) and show that the regression-based agnostic learning algorithm of Kalai et al. (2005) is optimal.  相似文献   

5.
Halfspace Matrices   总被引:1,自引:1,他引:0  
  相似文献   

6.
Let w(t) be a standard Wiener process, w(0) = 0, and let η a (t) = w(t + a) − w(t), t ≥ 0, be increments of the Wiener process, a > 0. Let Z a (t), t ∈ [0, 2a], be a zeromean Gaussian stationary a.s. continuous process with a covariance function of the form E Z a (t)Z a (s) = 1/2[a − |ts|], t, s ∈ [0, 2a]. For 0 < p < ∞, we prove results on sharp asymptotics as ɛ → 0 of the probabilities
$ P\left\{ {\int\limits_0^T {\left| {\eta _a \left( t \right)} \right|^p dt \leqslant \varepsilon ^p } } \right\} for T \leqslant a, P\left\{ {\int\limits_0^T {\left| {Z_a \left( t \right)} \right|^p dt \leqslant \varepsilon ^p } } \right\} for T < 2a $ P\left\{ {\int\limits_0^T {\left| {\eta _a \left( t \right)} \right|^p dt \leqslant \varepsilon ^p } } \right\} for T \leqslant a, P\left\{ {\int\limits_0^T {\left| {Z_a \left( t \right)} \right|^p dt \leqslant \varepsilon ^p } } \right\} for T < 2a   相似文献   

7.
Quantum search in a possible three-dimensional complex subspace   总被引:1,自引:0,他引:1  
Suppose we are given an unsorted database with N items and N is sufficiently large. By using a simpler approximate method, we re-derive the approximate formula cos2 Φ, which represents the maximum success probability of Grover’s algorithm corresponding to the case of identical rotation angles f = q{\phi=\theta} for any fixed deflection angle F ? [0,p/2){\Phi \in\left[0,\pi/2\right)}. We further show that for any fixed F ? [0,p/2){\Phi \in\left[0,\pi/2\right)}, the case of identical rotation angles f = q{\phi=\theta} is energetically favorable compared to the case |q- f| >> 0{\left|{\theta - \phi}\right|\gg 0} for enhancing the probability of measuring a unique desired state.  相似文献   

8.
Let {ξ k } k=0 be a sequence of i.i.d. real-valued random variables, and let g(x) be a continuous positive function. Under rather general conditions, we prove results on sharp asymptotics of the probabilities $ P\left\{ {\frac{1} {n}\sum\limits_{k = 0}^{n - 1} {g\left( {\xi _k } \right) < d} } \right\} $ P\left\{ {\frac{1} {n}\sum\limits_{k = 0}^{n - 1} {g\left( {\xi _k } \right) < d} } \right\} , n → ∞, and also of their conditional versions. The results are obtained using a new method developed in the paper, namely, the Laplace method for sojourn times of discrete-time Markov chains. We consider two examples: standard Gaussian random variables with g(x) = |x| p , p > 0, and exponential random variables with g(x) = x for x ≥ 0.  相似文献   

9.
We study a variant of the classical circuit-lower-bound problems: proving lower bounds for sampling distributions given random bits. We prove a lower bound of 1 ? 1/n ??(1) on the statistical distance between (i) the output distribution of any small constant-depth (a.k.a. AC0) circuit f : {0, 1}poly(n) ?? {0, 1} n , and (ii) the uniform distribution over any code ${\mathcal{C} \subseteq \{0, 1\}^n}$ that is ??good,?? that is, has relative distance and rate both ??(1). This seems to be the first lower bound of this kind. We give two simple applications of this result: (1) any data structure for storing codewords of a good code ${\mathcal{C} \subseteq \{0, 1\}^n}$ requires redundancy ??(log n), if each bit of the codeword can be retrieved by a small AC0 circuit; and (2) for some choice of the underlying combinatorial designs, the output distribution of Nisan??s pseudorandom generator against AC0 circuits of depth d cannot be sampled by small AC0 circuits of depth less than d.  相似文献   

10.
M. -R. Skrzipek 《Calcolo》1993,30(2):145-158
Let be a sequence of polynomials orthogonal with respect to a measure dω on the real line and the sequence of their associated functions (they are essentially the Hilbert transforms of these polynomials). We show how to get associated functions Q n [m,l] if the measure dω changes to , where Φm and ϕ l are polynomials of degree m resp.l. The results can be used for example to construct Gaussian quadrature rules for rational modified weight functions.  相似文献   

11.
In this work we give two new constructions of ε-biased generators. Our first construction significantly extends a result of Mossel et al. (Random Structures and Algorithms 2006, pages 56-81), and our second construction answers an open question of Dodis and Smith (STOC 2005, pages 654-663). In particular we obtain the following results:
1.  For every ko(log n) we construct an ε-biased generator G : {0, 1}m ? {0, 1}nG : \{0, 1\}^{m} \rightarrow \{0, 1\}^n that is implementable by degree k polynomials (namely, every output bit of the generator is a degree k polynomial in the input bits). For any constant k we get that n = W(m/log(1/ e))kn = \Omega(m/{\rm log}(1/ \epsilon))^k, which is nearly optimal. Our result also separates degree k generators from generators in NC0k, showing that the stretch of the former can be much larger than the stretch of the latter. The problem of constructing degree k generators was introduced by Mossel et al. who gave a construction only for the case of k = 2.
2.  We construct a family of asymptotically good binary codes such that the codes in our family are also ε-biased sets for an exponentially small ε. Our encoding algorithm runs in polynomial time in the block length of the code. Moreover, these codes have a polynomial time decoding algorithm. This answers an open question of Dodis and Smith.
The paper also contains an appendix by Venkatesan Guruswami that provides an explicit construction of a family of error correcting codes of rate 1/2 that has efficient encoding and decoding algorithms and whose dual codes are also good codes.  相似文献   

12.
The complexity of constructing pseudorandom generators from hard functions   总被引:3,自引:3,他引:0  
We study the complexity of constructing pseudorandom generators (PRGs) from hard functions, focussing on constant-depth circuits. We show that, starting from a function computable in alternating time O(l) with O(1) alternations that is hard on average (i.e. there is a constant such that every circuit of size fails to compute f on at least a 1/poly(l) fraction of inputs) we can construct a computable by DLOGTIME-uniform constant-depth circuits of size polynomial in n. Such a PRG implies under DLOGTIME-uniformity. On the negative side, we prove that starting from a worst-case hard function (i.e. there is a constant such that every circuit of size fails to compute f on some input) for every positive constant there is no black-box construction of a computable by constant-depth circuits of size polynomial in n. We also study worst-case hardness amplification, which is the related problem of producing an average-case hard function starting from a worst-case hard one. In particular, we deduce that there is no blackbox worst-case hardness amplification within the polynomial time hierarchy. These negative results are obtained by showing that polynomialsize constant-depth circuits cannot compute good extractors and listdecodable codes.  相似文献   

13.
14.
Given a nonempty set of functions
where a = x 0 < ... < x n = b are known nodes and w i , i = 0,...,n, d i , i = 1,..., n, known compact intervals, the main aim of the present paper is to show that the functions and
exist, are in F, and are easily computable. This is achieved essentially by giving simple formulas for computing two vectors with the properties
] is the interval hull of (the tolerance polyhedron) T; iff T 0 iff F 0. , can serve for solving the following problem: Assume that is a monotonically increasing functional on the set of Lipschitz-continuous functions f : [a,b] R (e.g. (f) = a b f(x) dx or (f) = min f([a,b]) or (f) = max f([a,b])), and that the available information about a function g : [a,b] R is "g F," then the problem is to find the best possible interval inclusion of (g). Obviously, this inclusion is given by the interval [( ,( )]. Complete formulas for computing this interval are given for the case (f) = a b f(x) dx.  相似文献   

15.
Given an undirected graph and 0 £ e £ 1{0\le\epsilon\le1}, a set of nodes is called an e{\epsilon}-near clique if all but an e{\epsilon} fraction of the pairs of nodes in the set have a link between them. In this paper we present a fast synchronous network algorithm that uses small messages and finds a near-clique. Specifically, we present a constant-time algorithm that finds, with constant probability of success, a linear size e{\epsilon}-near clique if there exists an e3{\epsilon^3}-near clique of linear size in the graph. The algorithm uses messages of O(log n) bits. The failure probability can be reduced to n Ω(1) by increasing the time complexity by a logarithmic factor, and the algorithm also works if the graph contains a clique of size Ω(n/(log log n) α ) for some a ? (0,1){\alpha \in (0,1)}. Our approach is based on a new idea of adapting property testing algorithms to the distributed setting.  相似文献   

16.
Using ideas from automata theory, we design the first polynomial deterministic identity testing algorithm for the sparse noncommutative polynomial identity testing problem. Given a noncommuting black-box polynomial f ? \mathbb F{x1,?,xn}f \in {\mathbb F}\{x_{1},\ldots,x_n\} of degree d with at most t monomials, where the variables xi are noncommuting, we give a deterministic polynomial identity test that checks if C o 0C \equiv 0 and runs in time polynomial in dn, |C|, and t. Our algorithm evaluates the black-box polynomial for xi assigned to matrices over \mathbbF{\mathbb{F}} and, in fact, reconstructs the entire polynomial f in time polynomial in n, d and t.  相似文献   

17.
The concept of $(\overline{\in},\overline{\in} \vee \overline{q})The concept of ([`( ? )],[`( ? )] ú[`(q)])(\overline{\in},\overline{\in} \vee \overline{q})-fuzzy interior ideals of semigroups is introduced and some related properties are investigated. In particular, we describe the relationships among ordinary fuzzy interior ideals, (∈, ∈ ∨ q)-fuzzy interior ideals and ([`( ? )],[`( ? )] ú[`(q)])(\overline{\in},\overline{\in} \vee \overline{q})-fuzzy interior ideals of semigroups. Finally, we give some characterization of [F] t by means of (∈, ∈ ∨ q)-fuzzy interior ideals.  相似文献   

18.
We give the first example of a binary pattern which is Abelian 2-avoidable, but which contains no Abelian fourth power. We introduce a family of binary morphisms which offer a common generalization of the Fibonacci morphism and the Abelian fourth-power-free morphism of Dekking. We show that the Fibonacci word begins with arbitrarily high Abelian powers, but for n ≥ 2, the fixed point of f n avoids x n+2 in the Abelian sense. The sets of patterns avoided in the Abelian sense by the fixed points of f n and f n+1 are mutually incomparable for n ≥ 2. Here A and B are finite alphabets, u a word over A, and w a word over B. The authors are supported by NSERC Discovery Grants.  相似文献   

19.
Consider the following model on the spreading of messages. A message initially convinces a set of vertices, called the seeds, of the Erdős-Rényi random graph G(n,p). Whenever more than a ρ∈(0,1) fraction of a vertex v’s neighbors are convinced of the message, v will be convinced. The spreading proceeds asynchronously until no more vertices can be convinced. This paper derives lower bounds on the minimum number of initial seeds, min-seed(n,p,d,r)\mathrm{min\hbox{-}seed}(n,p,\delta,\rho), needed to convince a δ∈{1/n,…,n/n} fraction of vertices at the end. In particular, we show that (1) there is a constant β>0 such that min-seed(n,p,d,r)=W(min{d,r}n)\mathrm{min\hbox{-}seed}(n,p,\delta,\rho)=\Omega(\min\{\delta,\rho\}n) with probability 1−n −Ω(1) for pβ (ln (e/min {δ,ρ}))/(ρ n) and (2) min-seed(n,p,d,1/2)=W(dn/ln(e/d))\mathrm{min\hbox{-}seed}(n,p,\delta,1/2)=\Omega(\delta n/\ln(e/\delta)) with probability 1−exp (−Ω(δ n))−n −Ω(1) for all p∈[ 0,1 ]. The hidden constants in the Ω notations are independent of p.  相似文献   

20.
In this paper we consider the problem ofL 1 sensitivity minimization for linear plants with commensurate input delays. We describe a procedure for computing the minimum performance, and we characterize optimal solutions. The computations involve solving a one-parameter family of finite-dimensional linear programs. Explicit solutions are presented for important special cases.Notation X * Dual space of a normed linear spaceX - All elements inS with norm 1 - S The annihilator subspace defined as . - S The annihilator subspace defined as . - BV(X) Functions of bounded variation onX - C 0(X) Continuous function on a locally compact spaceX such that for all > 0, {x ¦f(x)¦s is compact - C N (a, b) Vectors of continuous functions on (a, b) The authors acknowledge support from the Army Research Office, Center for Intelligent Control, under grant DAAL03-86-K-0171, and the National Science Foundation, under grant 8810178-ECS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号