共查询到20条相似文献,搜索用时 15 毫秒
1.
1.7 μm超短脉冲光纤激光器在生物成像和材料加工等领域具有重要的应用前景,受到了科学家们的极大关注。基于非线性偏振旋转锁模技术,实验搭建了全光纤结构的1.7 μm锁模脉冲掺铥光纤激光器。通过在激光器内加入光纤滤波器抑制掺铥光纤中的长波激光发射,同时采用纤芯泵浦的方式有效获得了1.7 μm波段的增益。激光器输出脉冲的光谱中心波长为1733 nm,3 dB带宽为6.3 nm。锁模脉冲的重复频率为19.56 MHz,平均功率为1.4 mW。同时,数值模拟了脉冲在激光器的腔内演化。文中提出的1.7 μm全光纤锁模激光器有利于进一步提高1.7 μm激光源的稳定性和集成度,在生物成像等领域具有重要的应用价值。 相似文献
2.
2 μm激光处于水的吸收峰,对人眼安全而且处于大气窗口波段,在空间通讯、遥感探测、环境监测、激光制导、红外对抗、外科手术等领域具有重要的应用价值。随着各类掺铥和铥钬共掺激光介质的不断丰富及锁模技术不断发展,2 μm波段超短脉冲全固态振荡器成为最近几年激光技术的研究热点之一。文中系统分析了2 μm波段激光基质材料和锁模技术,概括了近年来国内外2 μm 超短脉冲全固态掺铥振荡器的最新进展,并对代表性实验进行了分析介绍,最后对2 μm波段超短脉冲全固态掺铥振荡器的发展前景做出总结与展望。 相似文献
3.
4.
1μm波段超快激光器在材料表面改性、材料微加工等有着广泛的应用前景。激光振荡和放大技术能增强谐振腔的模式选择能力,激光增益和补偿器件可以提高激光峰值功率,进一步减小输出激光的脉冲宽度。主要概述了1μm波段周期量级的超快激光振荡器(纯被动锁模、孤子锁模、克尔透镜锁模)、超快激光放大器(啁啾脉冲放大、脉冲整形、非线性压缩技术),以及1μm超快激光器的调控器件与系统(激光增益介质、色散调控器件、高阶横模产生以及超快激光智能化控制)的最新研究进展。最后展望了1μm周期量级超快激光器的发展前景和趋势。 相似文献
5.
6.
7.
利用超快光纤激光器产生皮秒或飞秒光脉冲是当今世界最活跃的研究领域之一.尽管人们已经成功研制出了利用超快锁模激光器产生皮秒和飞秒光脉冲的技术,但这项技术仍局限于实验室和高端应用. 相似文献
8.
9.
10.
研制了高功率全光纤结构2μm波段掺铥皮秒脉冲光纤激光器。该激光器采用了主振荡功率放大(MOPA)结构设计,种子源采用790nm的多模半导体激光器作为抽运源、双包层掺铥光纤作为激光增益介质、半导体可饱和吸收镜(SESAM)作为锁模器件,从而实现了重复频率为10.4MHz的皮秒激光脉冲输出,其最大平均输出功率为15mW。种子源经过一级掺铥光纤放大器后,获得了1.1W高平均功率输出,相应的单脉冲能量高达105nJ,激光脉冲宽度为9ps,峰值功率为11.6kW。此时测得激光脉冲的中心波长为1963nm,3dB光谱带宽为0.5nm。 相似文献
11.
超快光纤激光器具有结构紧凑、可靠性高和光束质量好等优点,在科学研究和工业生产上有广泛的应用。2~5μm波段的中红外超快光纤激光器在气体探测、激光手术与中红外对抗中具有巨大的应用潜力,已成为超快光纤激光器领域的一个研究热点,尤其是利用掺杂铒离子的氟化物光纤作为增益光纤的光纤激光器,其可利用常见的980 nm泵浦激光产生2.8μm波段的超快激光,是研究最为广泛的中红外超快光纤激光器系统之一。然而,2.8μm波段的超快光纤激光器无论是在平均功率还是在单脉冲能量上,都与国际先进的近红外波段超快光纤激光器存在较大差距。前期报道的2.8μm超快光纤激光器输出的最高平均功率约为1 W,单脉冲能量约为30 nJ,这极大地限制了中红外超快光纤激光在高灵敏度气体测量等领域的应用。针对这一问题,本文设计了一套基于掺杂铒离子氟化物光纤的多级啁啾脉冲放大系统,并对其进行了数值模拟,此系统可将脉冲平均功率放大到10 W量级,从而获得超过250 nJ的单脉冲能量。此系统输出的高能量中红外脉冲具有约400 fs的超宽脉冲宽度,脉冲峰值功率可达450 kW。 相似文献
12.
稀土离子Tm3+/ Ho3+ 掺杂中红外2 μm波段超快激光由于广泛的应用前景成为近十余年来激光领域的研究热点之一。文中首先综述了稀土离子Tm3+/Ho3+掺杂固体/光纤2 μm波段超快激光锁模技术进展,包括主动锁模技术以及饱和吸收、克尔透镜、非线性偏振旋转、非线性光环形镜、非线性多模干涉等被动锁模技术;其次,结合激光增益介质及色散管理技术回顾了Tm3+/ Ho3+掺杂固体和光纤锁模激光脉冲宽度压缩进展;再次,总结了Tm3+/ Ho3+大能量/高功率超快激光技术及进展;最后,对2 μm波段超快激光发展趋势进行了总结和展望。 相似文献
13.
14.
在当前的高速光通信系统中,光源的选择至关重要。本在考虑耦合损耗的条件下,分析了光纤环镜(NALM)的非线性传输特性,论述了利用光纤环激光器锁模产生超短脉冲的原理。 相似文献
15.
波长2 μm附近的激光位于大气传输窗口和水的强吸收峰,在医疗、激光雷达、材料加工以及中红外泵浦源等方面具有重要应用。掺铥光纤激光器(thulium-doped fiber laser, TDFL)是一种可在2 μm波长获得高功率输出的重要光源。本文针对准连续(quasi-continuous wave, QCW)TDFL中的弛豫振荡和模间四波混频问题,通过增加偏置电流、优化增益光纤长度以及改变光纤盘绕直径等方案,优化了激光器的时域及频域输出特性,并探究了不同增益光纤结构对光纤传输模式的影响。研制的QCW-TDFL在脉宽100 μs、重复频率1 kHz、占空比为10%的情况下,在中心波长1 939.2 nm实现了峰值功率894 W、平均功率89.4 W的输出,并获得了稳定可控的脉冲输出波形和光谱特性。 相似文献
16.
超快光纤激光器已成为超短脉冲光源的理想选择对象并得到实际应用。由于光束直径受限于光纤截面及光与光纤的长相互作用距离,非线性效应不可避免。在非线性效应导致的脉冲分裂出现之前,在合适的条件下超快光纤激光器可以实现输出的周期分岔。周期分岔是指输出脉冲的参数以腔长的倍数为固定周期重复出现。周期分岔是非线性系统的本征特性之一,广泛存在于所有非线性系统中。文中对超快光纤激光器中的周期分岔的研究进展进行了详细综述,重点分析了不同色散区间周期分岔的表征特性,并对矢量孤子的周期分岔特性,以及多脉冲情况下的周期分岔特性进行讨论。 相似文献
17.
2 μm激光属于人眼安全波段,具有高大气透过率和水吸收特性,能覆盖CO2等温室气体的吸收峰,因此在大气环境监测、光通信、激光雷达、材料加工、医疗手术等领域有广泛应用。其中,单纵模运转的全固态2 μm脉冲激光器以其高稳定性、窄线宽和优良的光束质量等优势,可作为多普勒测风、相干差分吸收等激光雷达应用的优质光源,在工业、国防和科研等领域具有重要意义。目前,实现2 μm激光输出的主要方法有光参量技术和直接泵浦法。相比光参量技术,直接泵浦法更具高效率、可调节性和集成性等优点,已成为2 μm全固态激光的主流方式。文中总结了常用的2 μm固体激光增益介质,分析了空间结构振荡器单纵模选择的原理和特点,综述了2 μm单纵模全固态脉冲激光的研究进展,并对不同结构激光器的输出特性进行了比较,最后对2 μm单纵模全固态脉冲激光的发展前景进行了展望。 相似文献
19.
20.
中红外超短脉冲激光是国际研究热点,它在激光微创治疗、聚合物精细加工、高次谐波产生、强场激光物理、超快分子成像等领域具有重要的应用前景,而锁模是产生超短脉冲的重要技术手段。本文围绕氟化物光纤激光器,从稀土离子中红外激光激射过程出发,对该波段目前常用的三种锁模方式(包括材料可饱和吸收、非线性偏振旋转、频移反馈)的工作机理、发展现状以及存在问题进行了介绍、分析与总结,并对中红外锁模光纤激光器的发展趋势进行了展望。 相似文献