首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
以传统酸面团Sx样品为研究对象,利用宏转录组学技术解析Sx样品在发酵不同时期的优势菌种的变化、关键功能基因注释及代谢途径等。研究结果显示:Sx样品中参与发酵的微生物大约有210个种水平物种信息,以乳杆菌属(Lactobacillus)与酵母菌属(Saccharomyces)为优势菌属,以旧金山乳杆菌(Lactobacillus sanfranciscensis)和酿酒酵母(Saccharomyces cerevisiae)为优势菌种。通过对Sx样品不同发酵时期中菌种差异表达基因进行分析发现,参与碳水化合物及半乳糖的代谢过程相关的差异基因呈极显著富集(P0.001)。本实验有望阐明传统面食发酵过程中微生物代谢机理,为传统发酵面食工业化发展提供借鉴。  相似文献   

2.
应用分离自我国传统酸面团的区域特色乳酸菌--旧金山乳杆菌分别发酵小麦粉和小麦麸皮基质制成(小麦/麦麸)酸面团,研究了两种不同发酵基质的酸面团及其添加量对酵母面团体系面包烘焙及老化特性的影响。结果表明:与小麦粉制作的空白组面包相比,小麦酸面团可以明显改善面包的比容和感官品质;添加未发酵麦麸制作的非酸面团麦麸面包品质低于空白组,但引入麦麸酸面团(10%、20%、30%)后面包比容和感官评定得分均高于相对应的非酸面团麦麸面包。小麦酸面团和麦麸酸面团以及小麦麸皮均可以改善面包的老化特性,在相同贮藏期内,酸面团面包和麦麸面包的硬度增加量、水分迁移量和老化焓值都低于空白组,并且添加麦麸酸面团的面包其硬度和老化焓值都低于相对应的非酸面团麦麸面包。  相似文献   

3.
冻干酸面团发酵剂对发酵面团及面包香气的影响   总被引:2,自引:0,他引:2  
采用HPLC和SPME/GC-MS,研究冷冻干燥(冻干)旧金山乳杆菌酸面团发酵剂对普通和全麦发酵面团及其面包香气的影响。结果显示,冻干旧金山乳杆菌(Lactobacillus sanfranscensis,L.s.)酸面团发酵剂对发酵面团和面包香气的影响显著。酸面团面包面团中有机酸和游离氨基酸含量均高于相应的非酸面团面包面团;乳酸菌酸面团发酵显著提高了面包中挥发性物质的含量,L.s.高筋粉酸面团面包(SSAB)和L.s.全麦酸面团面包(SSWB)较非酸面团高筋粉面包(NSHB)和非酸面团全麦面包(NSWB)分别提高了11.31%和14.98%。全麦体系含有更多的游离氨基酸,其面包具有更浓郁的风味,全麦酸面团面包所含挥发物质总量大幅高于普通面包,NSWB和SSWB较NSHB和SSAB分别提高了22.54%和26.58%。3-甲基-1-丁醇、乙酸、糠醛、苯乙醇、3-羟基-2-丁酮、3-甲基丁酸、2-甲基丙酸、3-甲基丁醛和E-2-壬烯醛是面包中重要的香气物质。L.s.酸面团发酵剂在不同面粉面团体系中产生的作用不同,SSAB含有较多的内酯类化合物;SSWB含有更多的3-甲基-1-丁醇和3-羟基-2-丁酮。  相似文献   

4.
高分子量麦谷蛋白亚基通过分子间二硫键形成骨架,低分子量麦谷蛋白亚基通过二硫键结合在骨架上,骨架间通过疏水作用、氢键、静电作用等非共价作用形成聚集体。聚集体内相互作用或聚集复杂到一定程度,使用十二烷基硫酸钠溶液仍无法分散或溶解的被称为麦谷蛋白大聚体。麦谷蛋白大聚体的聚集和解聚对面团黏弹性、面团操作性和感官品质有较大影响。本文概述了从小麦籽粒到面粉再到面团制造过程中麦谷蛋白大聚体含量及聚集状态的变化。在籽粒储藏过程中,麦谷蛋白大聚体含量增加,表明麦谷蛋白逐渐聚集。在籽粒中心,麦谷蛋白大聚体占总蛋白的比例较高,表明籽粒中心的蛋白质发生更多的聚集。在面粉加水搅拌形成面团的过程中,麦谷蛋白颗粒吸水溶胀,麦谷蛋白大聚体含量逐渐下降,表明聚集程度下降。在面团醒发过程中,麦谷蛋白大聚体含量增加,表明麦谷蛋白重新聚集。在更多尺度或层级下解析蛋白质的聚集和解聚动态平衡,有助于揭示麦谷蛋白大聚体在小麦面团制造过程中的变化机理,对调控面筋形成、面团黏弹性等具有重要意义。  相似文献   

5.
燕麦酸面团发酵剂的冻干和储藏对面包风味的影响   总被引:1,自引:0,他引:1  
应用固相微萃取技术(SPME)和气相色谱- 质谱联用技术(GC-MS)研究发酵剂冷冻干燥(冻干)前后面包中的挥发性风味物质,考察发酵剂的冻干和储藏对燕麦酸面包风味的影响。结果表明:旧金山乳杆菌发酵燕麦酸面包中的挥发性风味物质共87 种,主要包括酸类、醇类、醛类、酯类、酮类、脂肪烃类,以及一些芳香族和杂环类化合物。酸类物质的含量最高,其次是醇类、芳杂环类和醛类物质。在发酵剂冻干和储藏过程中,醛类和醇类物质先增加后减少,酸类、酯类、酮类和脂肪族化合物先减少后增加,芳杂环类物质含量则持续升高。燕麦酸面团发酵剂冻干后以及储存30d 制得的面包依然具有丰富的风味。乳酸菌和酵母菌的竞争作用导致乙酸和乙醇含量呈现相反的变化。糠醛含量持续升高,而己醛则在冻干后显著减少,并在存储30d 后消失。  相似文献   

6.
本文研究了在酸面团发酵过程中,植物乳酸菌M616(Lactobacillus plantarum M616)对面团p H、TTA以及糖类含量变化的影响,并利用F3流变式发酵仪和吹泡仪对面团发酵力及流变特性的变化进行了研究。结果表明植物乳酸菌M616不仅对酵母菌的生长具有一定抑制作用,而且在面团p H和TTA的变化过程中起主导作用;另外,乳酸菌对淀粉的降解作用大于对还原糖的吸收,从而使面团中还原糖的含量增加,增加面团的甜味。在发酵后期,面团p H降低至3.73,这在一定程度上抑制了体系中霉菌和其它杂菌的生长。植物乳酸菌的生长代谢不仅显著提高了面团黏度、筋力,而且减缓了面团在发酵过程中韧性的降低。其中发酵酸面团对面团黏度和筋力影响最大,发酵过程中酸面团的最大黏度和筋力可以达到酵母发酵面团的2倍。  相似文献   

7.
类食品乳杆菌412对酸面团发酵的影响   总被引:2,自引:0,他引:2  
从酸面团中分离得到1株类食品乳杆菌(Lactobacillus parali mentarius)412,添加该菌株的面团在28℃发酵4h后的pH为5.2,发酵24h后pH为3.5;而添加商业化安琪酵母发酵的面团在28℃发酵4h后的pH为5.9,发酵24h后pH为5.2。类食品乳杆菌412与安琪酵母(接种量为107CFU/g)联合发酵测定表明,若菌株412起始接种量为109CFU/g,则面团在28(C发酵24h后的滴定酸度为0.76%(滴定酸度以乳酸计,%为质量分数);若菌株412的起始接种量是108CFU/g或107CFU/g时,则面团在28℃发酵24h后的滴定酸度为0.57%。当向面团添加6.75g/kg的葡萄糖或蔗糖可以促进类食品乳杆菌412的生长。面团在28℃发酵12h后,添加葡萄糖可以使菌株412的细胞数量从起始的2×108CFU/g提高到2.5×1010CFU/g,添加蔗糖则可以使其细胞数量提高到2.6×1010CFU/g;而添加果糖的面团在28℃发酵12h,菌株412的细胞生物量仅3.8×108CFU/g。与25(C或32℃发酵条件相比,28℃下发酵的酸面团中类食品乳杆菌412和安琪酵母菌的活菌数都比较高,且面团酸化速率高于单独采用安琪酵母菌发酵的面团。结果证明,类食品乳杆菌412能够单独或与商业化的安琪酵母联合应用到酸面团发酵中,并对面团的酸化起到积极促进作用。  相似文献   

8.
为了评价前期分离的一株酸面团源菌株HUCM105的益生特性及其对刺五加叶总皂苷含量的影响,通过形态学特征及16S rDNA基因序列分析鉴定种属,分别于pH2.0、pH2.5和pH3.0的酸性环境及0.5%胆汁环境培养3 h,并监测活菌数变化,于富含胆固醇的培养基中培养24 h并监测胆固醇含量的变化,以评价菌株HUCM1...  相似文献   

9.
目的 探究干热处理小麦粉对面团品质及流变学特性的影响。方法 将小麦粉分别在80、100、120、140℃温度下干热处理1.0 h,对不同干热处理小麦粉制得面团的湿面筋含量、面筋指数、粉质特性、麦谷蛋白溶胀指数、巯基和二硫键含量、动态流变学特性、微观结构、蛋白间分子作用力进行测定。结果 与未处理组相比,80、100和120℃干热处理湿面筋含量升高2.65%、3.56%和2.21%,140℃干热处理湿面筋含量降低32.07%, 100℃和120℃干热处理,面筋指数升高5.88和1.47, 100℃干热处理1.0 h可以使湿面筋含量和面筋指数达到最大值;面团的形成时间从3.5 min增加至6.0 min,稳定时间从5.0 min增加至7.0 min;面团的拉伸力和麦谷蛋白溶胀指数也呈现出相同的变化趋势。随着干热处理温度的升高,小麦粉中游离巯基含量降低,二硫键含量在100℃处理1.0h时达到最大值9.55μmol/g。此外,小麦粉100℃干热处理提高了面团的黏弹性,面团中的高聚物含量增加;面团中面筋蛋白网络结构形成的更加均匀;面团中蛋白质的共价键和非共价键作用力增强。结论 干热处理小麦粉提升了...  相似文献   

10.
本研究以分离自传统酸面团的一株植物乳杆菌-Gm4(Lactobacillus plantarum-Gm4, LP-Gm4)为研究对象,在单因素实验的基础上,按Box-Behnken中心组合原理设计响应面试验优化LP-Gm4发酵工艺条件,并采用低温烘干技术制备酸面团粉。研究结果表明,LP-Gm4的最佳发酵工艺参数为:发酵温度31.8 ℃、发酵时间13.5 h、LP-Gm4添加量10 lg(CFU/g)小麦粉。采取该工艺条件制得的酸面团粉,pH3.51,TTA值为17.8,LP-Gm4菌数为7.2×108 CFU/g。采取馒头的一次发酵工艺,将LP-Gm4酸面团粉与活性干酵母用于馒头制备,通过感官评价分析,发现酸面团粉制备的馒头,在表皮结构、内部弹性、口感、滋味和气味上均优于酵母馒头。  相似文献   

11.
采用植物乳杆菌(Lactobacillus plantarum)和酿酒酵母(Saccharomyces cerevisiae)分别进行单菌与混菌发酵菠萝汁,并比较分析不同接菌方式下菠萝汁的发酵性能及发酵体系中的产物。结果表明,相同接种量发酵72 h后,植物乳杆菌单独发酵活菌数可达108 CFU/mL,分别约为酿酒酵母单独发酵和二者混合发酵活菌数的3倍和10倍;植物乳杆菌的接入使发酵液pH降至3.21,而酿酒酵母的接入使菠萝汁中氨基酸态氮降至3.15×10-4 mg/L,糖类物质几乎被消耗殆尽。发酵产物分析结果发现,植物乳杆菌单独发酵产生大量乳酸(每升增加12.02 g/L)和少量乙酸(每升增加0.40 g/L),影响了口感,而酿酒酵母单独发酵则使菠萝汁中原有的香气物质损失较多(4种)。综合分析,采用二者混合发酵,既可保有菠萝本身的营养物质和特有香气,又可赋予其一定的发酵风味,获得口感良好的菠萝发酵饮品。  相似文献   

12.
该文研究植物乳杆菌(Lactobacillus plantarum,LP)与酿酒酵母(Saccharomyces cerevisiae,SC)共发酵对薏仁米发酵液的品质和抗氧化活性的增效性。以基础理化特性(pH、总酸、还原糖和可溶性蛋白)、有机酸、多肽分子质量分布、游离氨基酸、总黄酮、总多酚、总三萜和可溶性膳食纤维等物质的含量及体外抗氧化活性为指标,比较分析LP、SC和LP与SC共发酵(LP+SC)薏仁米发酵液的差异。结果表明,与LP组和SC组相比,发酵结束后LP+SC组的pH分别降低了2.22%(P>0.05)和30.89%(P<0.05)、还原糖含量分别降低了23.79%(P>0.05)和49.87%(P<0.05)、可溶性蛋白含量分别降低了28.81%(P<0.05)和8.69%(P>0.05)、总酸含量分别提高了9.89%(P<0.05)和521.15%(P<0.05)、总黄酮含量分别提高了27.15%(P<0.05)和13.06%(P<0.05)、总多酚含量分别提高了6.35%(P>0.05)和13.59%(P...  相似文献   

13.
为探究酿酒酵母与植物乳杆菌复合发酵对面条储藏特性的影响.采用质构仪(TA)、低场脉冲核磁共振仪(LF-NMR)、X-射线衍射仪(XRD)对面条在4℃储藏期间的品质变化进行分析.结果表明,与空白组相比,发酵面条的断条率低,吸水率无显著性差异(P>0.0.5),pH下降,可滴定酸(TTA)值上升;在相同储藏时间内发酵面条的...  相似文献   

14.
在高粱汁培养基内同时接种植物乳杆菌(Lactobacillus plantarum)和高产酯酿酒酵母(Saccharomyces cerevisiae),探究植物乳杆菌及其代谢产物对高产酯酿酒酵母酒精发酵及酯醇代谢的影响。结果表明:植物乳杆菌对高产酯酿酒酵母生长及酒精发酵的影响不大,发酵结束后残糖量均<5 g/L,乙醇含量为74~78 g/L;植物乳杆菌使高产酯酿酒酵母乙酸乙酯和高级醇产量下降,分别最多下降了15.31%、36.14%;培养基内不同乳酸质量浓度使酿酒酵母乙酸乙酯产量提高,乳酸质量浓度为7.1 g/L时,乙酸乙酯最多提高了39.84%;培养基内乳酸质量浓度在1.8~7.1 g/L时,高产酯酿酒酵母高级醇的产量明显降低,特别是苯乙醇的产量显著下降,下降了25.05%~75.64%。  相似文献   

15.
以老面肥(酸面团)中获得的类食品乳杆菌412为材料,采用高效液相色谱(HPLC)和气相色谱-质谱联用(GC-MS)技术,通过在添加碳水化合物(麦芽糖、甘露糖或葡萄糖)和酶类(淀粉酶、蛋白酶或脂肪酶)的面团中接种菌株412,30℃发酵12h后分析酸面团中的风味物质变化,结果表明,添加甘露糖后菌株412发酵面团中的有机酸含量(按乳酸计)最高(0.371g/L),且随添加量的增加面团中有机酸含量增加;添加脂肪酶后有机酸含量较对照组(0.304g/L)增加最多,达到0.421g/L。菌株412发酵的酸面团中含挥发性风味物质18种,主要包括酯类、烃类、羰基类、醇类、有机酸类以及一些芳香族和杂环类化合物。添加甘露糖后菌株412发酵面团中的挥发性风味物质种类增加最多,增至25种,且风味物质种类随甘露糖的添加量增加而略有减少,而随麦芽糖和葡萄糖添加量的增加而增加;添加蛋白酶后风味物质种类增加最多,增至23种。显然,类食品乳杆菌412联合不同糖类或酶类会有利改善发酵面团中的风味特征。   相似文献   

16.
为了探究具有不同菌种关系的乳酸菌和酵母菌在泡菜发酵过程中的发酵性能,本实验选取不同食品来源的8株乳酸菌和5株酵母菌,通过代谢产物交叉培养及菌株共培养方法,筛选到一对具有互促关系的乳酸菌和酵母菌,即植物乳杆菌(Lactiplantibacillus plantarum)J05和酿酒酵母(Sacchromyces cerevisiae)Y21。分别从培养方式、接种顺序、接种比例等方面分析该组菌共培养关系,并测定了泡菜发酵过程中pH、总酸、还原糖含量、亚硝酸盐的含量。结果显示,添加酿酒酵母Y21静置培养无菌代谢产物对处于生长期的植物乳杆菌J05具有明显促生长作用,先接种酿酒酵母Y21后接种植物乳杆菌J05可促进两种菌的生长,筛选到两株菌共培养的最佳比例为30:1和40:1。在30:1的接种比例下,泡菜发酵进入稳定期后,与自然发酵组、单菌组、互抑组相比较,互促组pH维持在3.4~3.5之间,显著低于其他各组(P<0.05);总酸含量最高值为1.25 mg/kg,显著高于其他各组(P<0.01);还原糖含量较低,维持在0.10 g/100 g左右,亚硝酸盐峰值含量为5.38 mg/kg,显著低于除酿酒酵母Y21组外的其他三组(P<0.01)。本实验筛选所得互促菌组发酵性能较强,可缩短泡菜发酵周期,降低泡菜中亚硝酸盐含量。  相似文献   

17.
以未经发酵的玉米粉为对照,对自然发酵、植物乳杆菌、酿酒酵母菌及复配菌种(植物乳杆菌和酿酒酵母菌)发酵制得的玉米粉品质进行分析。结果表明:相比未发酵玉米粉,发酵后玉米粉中粗蛋白、粗脂肪、粗纤维和粗灰分含量显著降低(P<0.05),总淀粉含量显著上升(P<0.05);发酵使玉米粉的糊化温度显著升高(P<0.05),自然发酵和复配菌种发酵后的玉米粉衰减值和回生值显著降低(P<0.05),玉米粉的稳定性和抗老化性能提高;植物乳杆菌和复配菌种发酵对玉米粉的微观结构影响较大;酿酒酵母菌和复配菌种发酵产生的香气和代谢产物有效改善了发酵玉米粉的不良气味。通过不同发酵方式的对比得知,植物乳杆菌、酿酒酵母菌和复配菌种发酵可以将玉米粉自然发酵所需的13 d分别缩短至72、18 h和48 h,有效提高了生产效率。经复配菌种发酵后制得品质、风味且加工性能更加优良的玉米粉。  相似文献   

18.
The influence of chemical and biological acidification on dough rheological properties and bread quality has been investigated. Two different flour types were used. Dough was chemically acidified with lactic acid. Two types of biologically acidified dough were prepared: dough with dry sourdough and with a Lactobacillus brevis preferment. Wheat dough rheological properties were investigated using the Farinograph, Extensograph and Amylograph. The baking response was also determined using standard baking tests. Addition of acidifiers resulted in firmer doughs with less stability, decreased extensibility and decreased gelatinisation maximum. The biological acidifiers increased the bread specific volume. Lactic acid addition had no influence on bread specific volume. In general, biological and chemical acidification decreased bread hardness. The addition of dry sourdough significantly decreased the lightness and increased the yellowness and redness of the bread crumb. The crust chroma, hue angle and brownness index were significantly changed by addition of acidifiers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号