首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
采用无皂乳液聚合法合成了苯乙烯-丙烯酸甲酯共聚物(PSMA)(n(St)∶n(MA)=75∶25),将PSMA与聚苯乙烯(PS)和聚乳酸(PLA)熔融共混制备了PSMA含量不同的PS/PLA共混物(m(PS)∶m(PLA)=1∶4),利用扫描电子显微镜、电子拉力机和转矩流变仪对共混物的相结构、力学性能以及流变行为进行了表征。结果表明,加入少量PSMA即能有效提高PLA与PS的相容性,减小PS/PLA共混物中分散相的相尺寸,提高PLA与PS两相间粘接作用;加入质量分数为0.5%的PSMA时,PS/PLA共混物的力学性能达到最佳;未加PSMA时,PS/PLA共混物在高剪切速率下剪切变稀显著,甚至低于纯PS,加入PSMA后,在高剪切速率下的剪切变稀程度与纯PLA相当。  相似文献   

2.
用浊点测定、傅里叶变换红外光谱和微差扫描热分析等方法研究了苯乙烯-顺丁烯二酸酐共聚物(PSMA)与苯乙烯-丙烯腈共聚物(PSAN)共混物的相容性。浊点测定的结果表明部分共混物加热产生相分离,呈LCST行为。从相容的共混物的红外光谱观察到丙烯腈—C≡N基团吸收带频率产生位移。研究结果表明当MA和AN含量差别不大时,PSMA/PSAN共混物相容。这是由于在一定的共聚物组成范围内,PSMA/PSAN共混物中存在较弱的特殊相互作用所致。  相似文献   

3.
α-PSMA共聚物与PMMA共混物的相容性   总被引:1,自引:0,他引:1  
用浊点测定、傅里叶变换红外光谱、微差扫描热分析和透射电子显微镜等方法研究了苯乙烯-顺丁烯二酸酐交替共聚物(α-PSMA)与聚甲基丙烯酸甲酯(PMMA)的相容性。结果表明:α-PSMA共聚物与PMMA共混物在共混比7/93~30/70范围内相容性得到改善,其原因是由于α-PSMA与PMMA之间存在特殊的相互作用。  相似文献   

4.
采用熔融共混与模压成型工艺制备了苯乙烯-丁二烯嵌段共聚物(SBS)共混增韧PLA复合材料,考察了SBS的添加量对共混体系的微观形貌、力学性能和热性能的影响。结果表明,SBS/PLA复合材料呈现典型的"海-岛"两相结构,SBS粒子在基体中分散均匀且与PLA间具有较好的界面结合;随着SBS质量分数的增加,SBS/PLA复合材料的抗拉强度和弹性模量均下降,而断裂伸长率和冲击韧性呈持续上升的变化趋势;SBS的引入使PLA的热分解温度向高温区偏移,显著改善了SBS/PLA复合材料的热稳定性能。  相似文献   

5.
以辛酸亚锡(Sn(Oct)2)作为催化剂,采用熔融共混法制备了不同反应时间的聚乳酸(PLA)和乙烯-乙烯醇共聚物(EVOH)的共混物,通过扫描电镜、核磁共振、差示扫描量热、热重分析、动态力学分析、力学测试等研究了在不同反应时间下,Sn(Oct)2对PLA/EVOH共混物的结构和性能的影响。结果表明,Sn(Oct)2能促使PLA和EVOH之间发生酯交换反应,形成的共混物具有形状记忆效应,且随反应时间延长,反应程度逐渐增加,共混物逐渐失去结晶能力,材料的热稳定性降低;同时PLA和EVOH的相容性得到改善;另外共混物的形状记忆效应随反应程度增加而不断提高,形变回复率最高达100%。  相似文献   

6.
用γ-氨丙基三乙氧基硅烷(KH550)对马来酸酐接枝的苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS-g-MAH)进行改性,制备出具有湿固化性能的SBS胶粘剂。通过红外光谱、热分析以及剥离强度测试探讨了SBS起始浓度、马来酸酐(MAH)、KH550以及萜烯树脂的用量等对产物性能的影响。结果表明,当SBS浓度为0.13 g/mL,SBS∶MAH∶BPO=10∶1∶0.06(质量比),KH550用量为SBS的13.63%,萜烯树脂用量为SBS的90%时,聚乙烯膜的T型剥离强度达到11.2N.25mm-1,同时对极性的聚氯乙烯的剥离强度也有提高。  相似文献   

7.
E-MA-GMA三嵌段共聚物对聚乳酸的增韧改性   总被引:4,自引:0,他引:4  
在聚乳酸(PLA)中加入不同比例的乙烯-丙烯酸乙酯-甲基丙烯酸缩水甘油酯三嵌段共聚物(E-MA-GMA)对其进行增韧改性。用傅立叶变换红外光谱仪和旋转流变仪分别对体系的反应进行表征;用熔融指数测量仪和旋转流变仪对体系的流变性能进行表征;同时测试材料力学性能并观察样条微观结构以考察E-MA-GMA对PLA的增韧效果。结果表明:E-MA-GMA的环氧官能团与PLA的端羧基和端羟基发生反应,使得共聚物与PLA有一定的相容性,PLA的冲击性能得到了明显的提高,含20%E-MA-GMA(质量分数)的共混物冲击强度较纯PLA提高了329.7%。  相似文献   

8.
结合电子转移再生催化剂原子转移自由基聚合(ARGET ATRP)和普通自由基聚合,制备了一系列聚丙烯酸丁酯接枝共聚物,详细研究了其作为苯乙烯-丙烯腈共聚物树脂/丙烯酸酯橡胶(SAN/ACM)共混体系的相容剂,在制备丙烯腈-苯乙烯-丙烯酸酯树脂(ASA树脂)时,不同主链结构、侧链相对分子质量、接枝密度及用量对增容效果的影响。通过傅里叶变换红外光谱仪和凝胶渗透色谱仪对聚合物结构进行测试和表征;采用动态力学分析仪(DMA)和冲击试验机研究了共混物的力学性能。结果表明,成功制备了不同结构的聚丙烯酸丁酯接枝共聚物,以苯乙烯-丙烯腈共聚物(SAN)作为主链比聚丙烯酸丁酯(PBA)作为主链的接枝共聚物具有更好的增容效果。此外,侧链PBA的相对分子质量较小时,侧链与主链摩尔比为3∶1及相容剂用量为3%(质量分数)时,接枝共聚物的增容效果最佳。DMA分析表明添加接枝共聚物后SAN和ACM两组分的玻璃化转变温度相互靠近,聚丙烯酸丁酯接枝共聚物起到了明显的增容作用。  相似文献   

9.
采用一系列不同甲基丙烯酸环氧丙酯(GMA)含量的苯乙烯-甲基丙烯酸环氧丙酯共聚物(SG)增容尼龙6(PA6)/间规聚苯乙烯(sPS)(80/20)共混物,通过扫描电镜及拉伸实验考察了SG共聚物中GMA的含量对共混物形态结构及力学性能的影响。形态观察显示,SG共聚物可以有效地降低PA6/sPS共混物中分散相的尺寸,增加两相界面间的粘接力;SG共聚物中GMA的含量对其增容效果有较大影响,质量分数为5%左右时,SG共聚物对PA6/sPS共混物的增容效果最佳。拉伸实验结果表明,PA6/sPS共混物的拉伸强度及模量随着SG共聚物的加入而增加,但其断裂伸长率在较高SG含量时则有所下降。  相似文献   

10.
以苯乙烯-马来酸酐共聚物(SMA)为增容剂,研究了共混工艺对ABS/PBT共混物聚集态结构和力学性能的影响。结果表明,SMA先与ABS共混再与PBT共混,共混物的分散相尺寸最小、分布最均匀,优于SMA先与PBT共混再与ABS共混的方法。ABS与PBT共混物的相容性差,加入反应性相容剂SMA后,PBT分散相尺寸变小且均匀地分散于ABS中,显著改善了ABS/PBT共混物的冲击、拉伸性能。共混物的聚集态结构强烈地受共混工艺的影响。  相似文献   

11.
采用普通共混方法及原位微纤技术制备了乙烯-辛烯共聚物(POE)/聚乳酸(PLA)共混物,通过扫描电镜、力学性能测试和动态流变性能测试对材料形貌及性能进行表征。结果表明,对于POE/PLA普通共混物,PLA以球形颗粒分布在POE基体中,材料的拉伸应力-应变曲线无明显的屈服行为,PLA质量分数为20%时,材料拉伸强度为6.6 MPa; PLA的加入提高了材料的储能模量(G′)和损耗模量(G″)。对于POE/PLA微纤共混物,PLA在POE中形成了PLA微纤,当微纤的质量分数为10%时,材料的拉伸应力应变呈现双屈服行为,随微纤含量增加双屈服行为更明显。POE-20试样在应变为23%发生第1次屈服,在应变为240%发生第2次屈服,材料拉伸强度为8.8 MPa,其拉伸强度比相同PLA含量的普通共混物高33.3%,G′在低频区出现1个平台。  相似文献   

12.
分别制备了马来酸酐与苯乙烯-丙烯腈无规共聚物(SAM)增容的尼龙6(PA6)/ABS/SAM共混物、马来酸酐接枝共聚的丙烯腈-丁二烯-苯乙烯共聚物(ABS-g-MA)增容增韧的PA6/ABS-g-MA共混物。结果表明,两个体系中ABS都可以均匀分散;冲击测试发现样条厚度为6.35 mm时,PA6/ABS-g-MA共混物出现明显的脆韧转变,PA6/ABS/SAM共混物为脆性断裂;样条厚度为3.18 mm时,两个体系都有明显脆韧转变;Vu-Khanh方程表明,PA6/ABS-g-MA共混物具有更高的裂纹扩展能(Gi)和撕裂模量(Ta),性能更好。  相似文献   

13.
利用Friedel-Crafts烷基化反应制备了聚苯乙烯(PS)/聚烯烃弹性体(POE)(50/50,质量比,下同)增容共混物。抽提结果显示,该共混物中PS-g-POE接枝共聚物的质量分数为28.3%。以该共混物作为增容母料,考察其对苯乙烯-丙烯腈共聚物/聚苯乙烯/聚烯烃弹性体(SAN/PS/POE)共混体系力学性能、热稳定性、微观结构等方面的影响。结果表明,固定SAN/PS/POE共混物组成,部分PS、POE组分被增容母料取代后,共混物性能得到明显提高,共混物SAN/PS/POE(50/20/30)与SAN/母料/POE(50/40/10)相比,其拉伸强度从10.8 MPa上升至21.0 MPa,断裂伸长率从1.6%上升至22.3%;热重分析显示,增容共混物中易分解组分的热稳定性提高,共混物SAN/PS/POE(20/10/70)与SAN/母料/POE(20/20/60)相比,其易分解组分的分解温度从413.6℃提高到425.1℃;从扫描电镜(SEM)照片可以看出,增容共混物中分散相更均匀细小。  相似文献   

14.
李迎春  贺茂勇 《材料导报》2017,31(8):125-129
首先研究了废旧高抗冲聚苯乙烯(R-HIPS)和丙烯腈-丁二烯-苯乙烯共聚物(R-ABS)由于老化降解发生的分子结构的变化,然后在此基础上研究了R-HIPS/R-ABS共混物相容性的变化以及SEBS-g-MAH和R-ABSm对多相聚合物R-HIPS和RABS微相结构的影响。结果表明,当R-HIPS/R-ABS/SEBS-g-MAH的配比为7∶3∶1.5(质量比)时,加入4%(质量分数)的RABSm,共混物缺口冲击强度由2kJ/m~2提高到9kJ/m~2;同时共混物的橡胶相和基体相相界面变模糊,证明SEBS-g-MAH和RABSm增强了R-HIPS和R-ABS各自的橡胶相和基体相的界面粘结性以及R-HIPS/R-ABS共混物的相容性,从而提高了R-HIPS/R-ABS共混物的宏观力学性能。  相似文献   

15.
研究了经磨盘形力化学反应器碾磨处理后的PVC/SBS共混体系的结构与性能。结果表明,经过碾磨的PVC/SBS共混体系的GPC曲线峰型变宽,峰位向高分子量部分移动,Molau实验和FT—IR均表明在碾磨过程中有PVC—SBS共聚物生成,SBS与PVC的相容性得到了改善。PVC的冲击强度为4.6kJ/m^2,以PVC与SBS共碾磨产物(MCB)为增容增韧荆可使PVC/MCB(100/59)的冲击强度高达68.1kJ/m^2。少量超细CaCO2的加入可提高共混体系的屈服强度和断裂伸长率,通过碾磨可获得既增韧又增强的良好效果。  相似文献   

16.
采用熔融共混的方法将聚氯乙烯(PVC)树脂、α-甲基苯乙烯-丙烯腈共聚物(α-MSAN)和丙烯腈-丁二烯-苯乙烯接枝共聚物(ABS)共混,通过改变共混物的组成,制备了一系列不同橡胶含量和基体组成的PVC/α-MSAN/ABS共混物,研究了共混物的力学性能及形变机理。结果发现,随着基体树脂中PVC含量的增加,共混物的冲击韧性显著提高,而拉伸强度逐渐降低,同时促使共混物发生脆韧转变所需的橡胶含量逐渐减少。形态结构研究表明,由于基体树脂链缠结密度的增加,共混物的形变机理逐渐由银纹向剪切屈服转变,进而导致体系韧性的增加。  相似文献   

17.
采用熔融挤出共混的方法制备了聚乳酸(PLA)/改性聚醚酯嵌段共聚物(CH4132)共混物。利用差示扫描量热分析、动态力学热分析及场发射扫描电子显微镜等研究了共混物的结晶熔融行为、动态力学性能、相形态及力学性能。结果表明,CH4132的添加抑制了PLA的冷结晶能力,而对熔融及熔态结晶行为没有影响;PLA与CH4132具有部分的相容性且相容程度受CH4132含量影响;共混物呈现出以PLA为海、CH4132为岛的典型海岛结构;共混物的拉伸强度、弯曲强度和模量等刚性量随CH4132添加而降低,但体系的断裂伸长率和冲击强度等韧性性质得到了明显改善,在CH4132质量分数为10%时断裂伸长率最大,质量分数为30%时冲击强度为纯PLA的4.5倍。  相似文献   

18.
EVA/SEBS共混材料的发泡技术   总被引:1,自引:0,他引:1  
将苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物(SEBS)应用于乙烯-醋酸乙烯共聚物(EVA)发泡材料中。发泡体系确定为偶氮二甲酰胺(AC)/过氧化二异丙苯(DCP)。讨论了发泡时间及发泡温度对EVA/SEBS发泡材料性能的影响。差示扫描量热(DSC)测试表明,ZnO与ZnSt比例为1∶5时,AC的分解温度为175.9℃,与DCP的分解温度相近。此发泡体系在170℃~190℃进行模压发泡,控制适当的模压发泡时间,可制备密度在0.15 g/cm3~0.49 g/cm3,泡孔尺寸可调的发泡材料。文中对最终发泡材料的力学性能进行了测试,并通过扫描电子显微镜(SEM)观察了发泡材料的泡孔尺寸大小和泡孔均匀程度。  相似文献   

19.
通过熔融共混的方法制备了不同配比的聚氯乙烯(PVC)/丙烯腈-丁二烯-苯乙烯(ABS)共混物,采用热失重法和刚果红试纸法对共混物的热稳定性进行了研究。热失重分析发现,共混物第一阶段失重的起始失重温度T01和最大失重速率时温度T1m都随着ABS接枝共聚物含量的增加向低温方向移动,ABS的加入促进了PVC的降解;刚果红试纸法分析发现PVC/ABS共混物的静态热稳定时间比PVC的长;透射电镜观察发现ABS接枝共聚物的加入改善了PVC的加工流动性,提高了稳定剂的分散性和效率,这是共混物稳定时间变长的主要原因。  相似文献   

20.
以过氧化苯甲酰为引发剂,采用溶液聚合的方法合成了N-苯基马来酰亚胺/苯乙烯/α-甲基苯乙烯/马来酸酐四元共聚物。保持马来酸酐单体质量分数为5%,N-苯基马来酰亚胺单体质量分数为30%,改变α-甲基苯乙烯和苯乙烯的投料比合成系列四元共聚物。采用红外光谱、核磁共振和凝胶渗透色谱对四元共聚物的化学结构和相对分子质量进行了表征,考察了四元共聚物对ABS树脂耐热性及力学性能的影响。结果表明,α-甲基苯乙烯和苯乙烯的投料比为1∶1,数均相对分子质量为2.50×10~4左右的四元共聚物的玻璃化转变温度(T_g)最高达到253.3℃,5%热分解温度可达到351℃。该共聚物可使ABS共混物T_g升高到124.7℃,且具有较好的力学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号