首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
采用熔体发泡法制备了一种镁基泡沫生物材料,其中以镁钙合金为基体材料,羟基磷灰石(HA)为增粘剂,以碳酸镁(MgCO3)为发泡剂。对结构均匀的镁基泡沫生物材料进行测试,研究其生物可降解行为。用腐蚀前后孔结构、浸泡试验和电化学测试对镁基泡沫材料的生物可降解性进行表征。结果表明,在固定时间内随着试样孔隙率的增加,失重率不断增加;相比于添加了羟基磷灰石(HA)的样品,不含HA颗粒地样品呈现出更高质量损失率。同时,Mg基泡沫生物材料的总孔隙率和羟基磷灰石(HA)含量均对Mg基泡沫材料的开孔率有重要的影响。在相同时间内,开孔率随试样总孔隙率的增加而增加。在模拟体液(SBF)介质中,含有羟基磷灰石(HA)的Mg基泡沫生物材料比不添加羟基磷灰石(HA)的试样具有更高的耐腐蚀性。  相似文献   

2.
感染是骨损伤临床治疗中常见的并发症。镁基复合材料是一种可生物降解的抗菌生物材料,已被用于减少术后感染。本文作者合成含银镁基骨组织工程支架材料,并对其进行体外表征。通过造孔剂法制备4种不同银含量(0、0.5、1、和2 wt.%)的多孔镁基支架,用Mg-Ca-Mn-Zn-xAg (MCMZ-xAg)表示,其中x表示银含量。研究银含量对材料的孔隙结构、力学性能、生物活性和抑菌区的影响。采用X射线衍射分析(XRD)、扫描电镜(SEM)、透射电镜(TEM)和荧光显微镜对支架进行表征。体外腐蚀试验结果表明,银含量低的支架比银含量高的支架具有更好的耐腐蚀性。抗菌活性的检测结果表明MCMZ-Ag支架具有显著抑制大肠杆菌和(E.coli)和金黄色葡萄球菌(S.aureus)生长的作用,且随着含银量的增加,MCMZ-Ag支架周围的抑菌区面积逐渐增加。然而,含银量过高会增加材料的细胞毒性。总之,含0.5wt.%Ag的支架因其具有连通的孔隙、足够的力学性能、抗菌活性和细胞黏附性能,在修复与替换受损和患病骨方面具有应用前景。  相似文献   

3.
针对壳聚糖涂层对镁基生物复合材料在模拟体液中的降解行为进行了研究。体外降解实验表明:在模拟体液中,经过壳聚糖涂层的镁基复合材料的浸泡腐蚀速率、体液p H值的增加等都比未涂层的材料低,同时镁基复合材料降解后释放出的金属离子的量也减少。细胞毒性试验表明经过壳聚糖涂层的镁基复合材料达到毒性评级最低级0级,也比未涂层的材料毒性更低。壳聚糖涂层对于镁基植入材料而言,减少了降解产物的不利影响,是一种针对镁基生物植入材料有效的表面涂层。  相似文献   

4.
作为一种新型结构和功能材料,泡沫金属具有比实体金属更优异的性能。本研究利用粉末冶金造孔剂法成功制备了孔隙率为38.9%~57.5%泡沫镁。随着孔隙率从38.9%增加到57.5%时,其弹性模量由8.5 GPa下降到3.3 GPa,初始屈服应力从24.90 MPa下降到9.40 MPa。泡沫镁具有较低的初始屈服应力和较长的应力平台,因此,它可以作为优异的缓冲吸能材料。  相似文献   

5.
以尿素为造孔剂,利用基于粉末冶金法的"造孔剂-水浸出"法制备可用于骨组织工程的多孔Mg-Ca-Zn-Co合金支架。并研究合金浸泡在氟化氢(HF)溶液中进行表面氟化处理对合金耐腐蚀性能的影响。结果表明,随着Zn含量的增加,合金的弹性模量提高。Ca的添加可以阻止烧结过程中样品的氧化。合金在模拟体液中的电化学腐蚀行为的研究表明,当Zn含量从1.0%增加到3.0%时,合金的腐蚀率和质量损失都先减小,随着Zn含量的进一步增加,合金的腐蚀率和质量损失而后增大。氟化处理后合金表面形成了氟化物涂层,提高了合金的耐腐蚀性。  相似文献   

6.
以梧桐树含纤维的果实为原料、煤焦油沥青为粘合剂,通过粉末模塑法制备了100%绿色碳泡沫,目的是采用生物材料制备高强度,且可应用于物理、热和电磁屏蔽领域的多孔碳泡沫。在1000°C下不使用任何外部保护性气体,通过对梧桐树种子热解进行快速碳化。为比较分析,模制过程中在一些样品中混入了5%(质量分数)的氯化铁。氯化铁作为石墨化催化剂和活化剂,使材料比表面积从88增加到294 m~2/g,弯曲强度降低25%。由于材料中引入较多的石墨成分,其热稳定性得到改善,但热导率提高有限(从0.22提高到0.67 W/(m·K))。经催化得到的碳泡沫在X波段的电磁屏蔽效能在20 dB以上,反射率仅为8.26%~10.33%,表明吸收损耗是占主导地位的电磁屏蔽机理。这种新材料轻质、高度多孔,保留有机生物材料互连多孔形态,有望应用于高温隔热材料领域。  相似文献   

7.
采用球磨加搅拌铸造工艺制备了CNTs(质量分数为0.1%)增强的AZ91D镁基复合材料。通过光学显微镜、X射线衍射仪、傅里叶红外光谱仪、扫描电子显微镜、透射电子显微镜和室温拉伸试验对复合材料进行表征和分析。结果表明:碳纳米管在镁基体中分散很均匀,并且复合在基体中的碳纳米管结构较完整。与AZ91D基体相比,复合材料屈服强度和伸长率分别提高了47.2%和112.2%。碳纳米管在基体中的均匀分散且与基体形成的强界面结合使复合材料屈服强度和伸长率同时得到了提升。此外,晶粒细化和基体中均匀分散的β相(Mg_(17)Al_(12))也有助于复合材料力学性能的提高。  相似文献   

8.
采用高能球磨与冷压烧结相结合的粉末冶金法制备了TNZS、5%TiO_2/TNZS及5%HA/TNZS(质量分数,下同)生物材料,并研究了TiO_2和HA的添加对TNZS体外组织相容性的影响。结束表明:3种TNZS基生物材料均无细胞毒性;5%TiO_2/TNZS和5%HA/TNZS表面在1,3,5和7 d的细胞相对增殖抑制率CPIR值大幅低于TNZS组,TiO_2和HA的添加显著提高了TNZS材料表面的细胞增殖速度,增强了其细胞增殖能力,更有助于诱导成骨细胞的体外增殖;3种TNZS基材料表面贴附的成骨细胞伪足伸展状态良好,而5%TiO_2/TNZS表面贴附的成骨细胞分布更加均匀。  相似文献   

9.
采用粉末冶金方法制备石墨/二硫化钼增强镁基自润滑复合材料,并分别表征这些复合材料的显微组织、物理性能、力学性能和磨损性能。利用XRD手段鉴定复合材料中的Gr/MoS_2相。显微组织观察表明,Gr/MoS_2颗粒均匀地分散在镁基体中。在室温条件下施加载荷5 g并保持15 s,测试复合材料的显微硬度,得到所有复合材料的显微硬度为VHN 29-34。使用显微硬度、拉伸和压缩试验研究材料的力学性能,并用扫描电子显微镜分析材料的断口形貌,得到Mg-10MoS_2复合材料最高的硬度、抗压强度和拉伸强度。用销-盘式摩擦仪测试烧结复合材料的摩擦因数和磨损量。另外,通过磨损表面特征,利用SEM系统分析复合材料的摩擦磨损机制。结果表明,与石墨相比,二硫化钼的摩擦因数和磨损有所减少。  相似文献   

10.
采用新型的泡沫浸渍法,以聚氨酯泡沫为载体制备出具有较高强度和良好生物相容性的多孔铌基材料。并借助分析天平、XRD、CS600碳硫测试仪和SEM对多孔铌的孔隙度、性能和微观结构进行了测试及观察。结果表明:制成的多孔铌,具有三维、连通孔隙结构且无任何杂质相,孔隙率为71.4%,孔径尺寸为500 μm,平均密度为2.45 g/cm3。三维连通多孔铌的平均弹性模量为815 MPa,抗压强度为36.62 MPa,与人体松质骨的力学性能相匹配。  相似文献   

11.
可降解医用镁基生物材料的研究进展   总被引:4,自引:0,他引:4  
生物体内可降解吸收材料是生物材料发展的重要方向,由于金属材料具有较好的强度和塑韧性,因此金属基可降解吸收材料具有重要的临床应用价值。镁是所有金属材料中生物力学性能与人体骨最接近的金属材料,具有理想的生物力学相容性,因此,镁合金作为可降解生物材料具有巨大的应用潜力。首先介绍了镁基材料作为生物体内可降解植入材料的优点,然后简要回顾了镁基可降解生物材料的早期研究情况,同时系统地介绍和总结了目前的研究进展和遇到的挑战,最后展望了镁合金医用材料的应用前景和发展方向。  相似文献   

12.
通过电化学技术分析镁空气电池阳极Mg-Al-Pb-La合金的放电行为,并与Mg-Al-Pb合金的放电行为进行比较。结果表明,相对于Mg-Al-Pb合金,Mg-Al-Pb-La合金在开路电位下耐蚀性增强,表现出更好的放电活性。Mg-Al-Pb-La合金阳极的利用效率比商用Mg-Al-Zn (AZ)和Mg-Al-Mn (AM)合金阳极的利用效率高。由Mg-Al-Pb-La阳极和空气阴极组成的单个镁空气电池的平均放电电压为1.295V,在放电电流密度为10 mA/cm2时其放电容量为1370 mA·h/g,比Mg-Li合金作为空气电池阳极时的放电容量高。Mg-Al-Pb-La阳极放电性能的增强是由于显微组织的改变降低了自腐蚀,加速了电池放电过程中氧化产物的脱落。另外,分析了Mg-Al-Pb-La合金阳极在放电过程中的溶解机制。  相似文献   

13.
采用粉末冶金技术添加造孔剂制备生物医学用高孔隙度Ti-Co合金。Ti合金因具有高的熔点和氧亲和力。而难以进行直接加工。添加Co能降低其熔点,因而Ti-Co合金能在更低的温度进行烧结。在人工唾液中考察制备的Ti-Co合金样品的电化学腐蚀行为。研究合金的Co含量、人工唾液的p H值和氟离子浓度升高对样品的电化学腐蚀性能的影响对样品的显微组织和力学性能进行测试。电化学阻抗谱分析结果表明,样品的耐蚀性随氟离子浓度升高和p H值降低而降低。根据Mott-Schottky分析,缺陷密度随氟离子浓度的增加和人工唾液p H值的降低而增加。  相似文献   

14.
合成一种新型廉价的负载双金属氧化物NiO和CuO的碱激发镁渣基纳米复合胶凝材料(AMSCN),并将其用于光催化甲基橙染料降解的探索性研究。FESEM结果表明:碱激发镁渣基胶凝材料具有大约30 nm的形貌特征;XRD结果表明:碱激发镁渣基胶凝材料主要是由水化硅酸钙等矿物相所组成,而纳米复合胶凝材料中的NiO以无定形的方式、CuO以大约15 nm大小的颗粒均匀地分散在碱激发镁渣基胶凝材料的基质上。10(NiO+CuO)/AMSCN纳米复合胶凝材料高的光催化甲基橙染料降解活性归因于AMSCN载体与NiO及CuO活性相的协同作用,其光催化降解反应为一级反应动力学。  相似文献   

15.
研究机械合金化制备的纳米晶Mg-6Al-1Zn和Mg-6Al-1Zn-1Si合金的热稳定性和晶粒生长动力学。研究从元素粉末开始,使用了各种分析手段,包括差示扫描量热法(DSC)、X射线衍射(XRD)、扫描电镜、透射电镜和能谱分析。研究等温退火过程中的晶粒生长动力学。XRD结果表明:尽管两种材料体系的晶粒尺寸随退火温度的升高而增加,但在350°C退火1 h后,含Si体系具有更小的晶粒尺寸(60 nm),而Mg-6Al-1Zn体系的晶粒尺寸为72 nm。Mg-6Al-1Zn-1Si体系在等温退火过程中形成的第二相金属间化合物Mg2Si不仅影响活化能,而且影响动力学方程的指数。含Si体系的硬度更高是由于金属间相Mg_2Si的形成。  相似文献   

16.
氢能的利用越来越受到人们的重视,而氢的储存和运输限制了其广泛的实际应用。镁基合金作为一种固体储氢材料,在储氢领域显示出巨大的潜力。但是,吸放氢温度高,释氢速率慢,阻碍了其工程应用。为了提高镁基合金的储氢能力,目前的研究主要集中在合金成分的优化和加工工艺的改进方面,而纳米细化是最有前途的方法之一。详细介绍了纳米镁的各种制备工艺,包括高能球磨、物理气相沉积、氢化化学气相沉积、液相化学合成和模板法,并分析了各种方法的优缺点。阐述了纳米结构和元素掺杂对镁基合金储氢性能的影响。本研究为储氢领域的材料开发和制备工艺的改进提供参考。  相似文献   

17.
主要研究了喷射成形镍基高温合金的微观组织特征和时效硬化行为。合金经1140℃,8 h固溶处理,然后在780℃,2~12 h时效处理。分别测试了合金显微硬度、析出相大小及形态、电导率和正电子湮没寿命与时效时间的关系。结果表明,在时效8 h时,显微硬度达到最大值,此时γ'长大到临界尺寸56 nm。然而,时效时间超过8 h,合金显微硬度降低,这是由于γ'长大超过了其临界尺寸。随着时效时间延长至6 h,电导率快速增加到其最大值32%IACS,但是正电子湮没寿命则降低到最小值149 ps,在时效时间为10 h时,正电子湮没寿命达到最大值297 ps。这是由在时效过程中γ'尺寸的变化以及缺陷浓度的变化引起的。  相似文献   

18.
闭孔泡沫铝因为导热系数低而在隔热、保温等方面具有传统绝热材料所不可比拟的优势。利用三维建模软件建立了球形泡孔的泡沫铝三维模型,推导了泡沫铝孔隙率、平均孔径和孔壁厚度之间的关系;通过C语言建立了具有不同孔结构和孔洞随机分布的不均匀泡沫铝模型,并用ANSYS软件考察分析了温度场的分布。结果表明:导热系数随着孔隙率的降低呈现增大趋势;孔隙率相同时,由于孔隙分布不一而导热系数不同,说明孔隙分布对泡沫铝导热性能存在影响;孔洞沿着垂直热流方向延伸或分布对热流的阻碍作用加大,甚至由于孔洞在垂直于热流方向的连通,出现高热阻墙而导致导热性能急剧下降,这说明仅仅依据孔隙率不能唯一确定泡沫铝的导热性能。  相似文献   

19.
用挤压铸造法制备不同ZnO包覆量的硼酸镁晶须增强的6061铝基复合材料,并对其进行热挤压处理。对复合材料的显微组织及其力学性能进行研究。结果表明:随着ZnO包覆量的增大,铸态复合材料的弹性模量直线增加。铸态复合材料的极限抗拉强度和屈服强度随ZnO包覆量的增大先增大后减小。然而,铸态复合材料的伸长率基本一致。经挤压后,复合材料的伸长率大幅增加;无涂层复合材料的极限抗拉强度最大,且其弹性模量有所提高。涂覆ZnO涂层的复合材料中晶须发生明显的折断现象。但是,随着ZnO包覆量的增大,晶须的破坏程度有限。  相似文献   

20.
为了提高高温合金的抗高温氧化性能,采用粉末包埋法制备了镍基高温Al-Cr-Y涂层,研究了不同Al含量涂层的高温氧化行为,并通过XRD,SEM对涂层的物相和形貌进行了分析。结果表明:含有2%(质量分数)的Al粉所制备的涂层呈3层结构,主要相为α-Cr,而含有2.5%和3%Al粉的涂层为双层结构,主要相为Ni Al,在含有2.5%Al粉的涂层中存在富Cr的固溶体。经高温氧化实验看出,含有2%Al粉涂层的抗高温氧化性能最差,含2.5%Al粉的涂层在1000℃下形成了致密连续的氧化膜,起到了很好的保护作用,表现出优异的抗高温氧化性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号