首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李战  钱俊 《包装学报》2018,10(4):78-87
石墨烯基纳米复合材料是制备超级电容器电极的重要原料之一,也是当下的研究热点。首先介绍了石墨烯/导电聚合物、石墨烯/金属氧化物两类二元纳米复合材料的特点及其制备方法;再介绍了三种不同结构类型的石墨烯/导电聚合物/金属氧化物三元纳米复合材料,并通过分析其结构特点,说明其优势与不足;最后简要介绍了石墨烯与金属硫化物、贵金属粒子以及其他碳材料复合的研究现状。通过分析可知,目前石墨烯基纳米复合材料仍存在较多不足之处,寻求快速、绿色、经济的方法制备能有效提高超级电容器电化学性能的石墨烯基纳米复合材料,将是未来的发展方向。  相似文献   

2.
石墨烯基复合超级电容器材料研究进展   总被引:1,自引:0,他引:1  
石墨烯基复合材料因其优异的性能广泛应用于各个领域,尤其在超级电容器的研究中。本文对石墨烯基复合超级电容器材料的结构进行了分类,并分别从石墨烯-碳基复合材料、石墨烯-导电高分子复合材料、石墨烯-过渡金属化合物复合材料的角度,总结了不同石墨烯基复合超级电容器材料的研究进展,重点强调了优化电极结构和提高电极性能之间的关系。同时,概述了石墨烯基复合材料在锂离子电池、太阳能电池、催化等其他方面的应用。获得高能量密度、功率密度以及长循环寿命的超级电容器是其作为电极材料的发展趋势。  相似文献   

3.
三维(3D)石墨烯及其复合材料具有柔韧性好、比表面积大、功率密度高、力学性能稳定以及离子传输迅速等优良性能,成为材料科学领域备受关注的材料。概述了三维石墨烯材料的基本性质和性能,并对其多元复合材料的制备方法以及在超级电容器储能材料方面的应用研究进展进行了评述。三维(3D)石墨烯常用的制备方法有自组装法、模板导向法和3D打印法等,通过对制备方法进行改进,可以有效调控三维材料的多孔结构、孔径、柔韧性和电子传递速度等性能。三维(3D)石墨烯与过渡金属化合物及导电聚合物复合而成的多元复合物在超级电容器电极材料方面表现出广阔的应用前景。  相似文献   

4.
张苗苗  刘旭燕  钱炜 《材料导报》2018,32(3):378-383
聚吡咯是导电稳定性最好的导电聚合物之一。因其制备方式简单、环境友好、导电率高、电容性好及独特的掺杂性,制备聚吡咯复合材料以提高电极材料的稳定性成为超级电容器导电聚合物基电极材料的热点研究方向。综述了近年来聚吡咯电极材料及其与碳基材料、金属氧化物材料等二元、三元复合电极材料应用于超级电容器中的研究进展,介绍了聚吡咯的电荷储存机制、聚合机理、制备方法等,指出了当前超级电容器聚吡咯及其复合电极材料的热点研究领域,并且展望了其发展前景。  相似文献   

5.
石墨烯基材料在超级电容器中的应用研究进展   总被引:1,自引:0,他引:1  
石墨烯作为一种新型的碳材料,具有优异的物理、化学及力学性能,如导热导电性能良好、比表面积大及机械强度高,这些特性使其成为应用在电化学领域中的理想材料.总结了超级电容器用石墨烯材料的主流制备方法,综述了最近几年石墨烯及其复合材料在超级电容器中的应用研究进展,并展望了其未来的应用前景.  相似文献   

6.
碳基材料掺杂聚合物导电特性研究进展   总被引:1,自引:0,他引:1  
导电聚合物可分为结构型导电聚合物和复合型导电聚合物,其中复合型导电聚合物主要是碳基材料或金属掺杂聚合物而得到。文中综述了碳基材料掺杂聚合物的导电机理和碳基材料掺杂聚合物导电特性的研究进展。导电机理主要有渗滤理论、隧道效应和场致发射理论等。目前应用于复合型导电聚合物的碳基材料主要为炭黑、碳纳米管和石墨烯等。文中还简要介绍了碳基材料掺杂聚合物的应用和发展趋势。  相似文献   

7.
目的对近年来使用改性石墨烯改善聚合物基复合材料介电性能的研究进行总结,指出今后的发展方向。方法总结通过石墨烯改性来改善其在聚合物的分散性和提高聚合物基石墨烯复合材料介电性能的方法;对比石墨烯/聚合物复合材料的复合工艺对其介电常数和介电损耗数值的变化,总结不同的改性方法对复合材料介电性能的影响。结论石墨烯作为一种性能较优的导电填料对材料介电性能影响巨大,然而,由于其物理分散性不好,极大地阻碍了石墨烯改性聚合物基高介电复合材料的发展。通过对石墨烯进行功能化改性修饰可以有效提高聚合物基复合材料的介电性能,这种材料可作为电活性聚合物,在很多需要高介电常数的电介质材料领域,如超级电容器、感应器、驱动器、智能包装和机器人等方面得到应用。  相似文献   

8.
目的 三维石墨烯在实际应用中所呈现的性能与其理论模拟结果相差甚远,目前尚无系统的原因分析和改进方法总结,回顾三维石墨烯的发展历程及近几年国内外研究进展是必要的,为三维石墨烯在工业设计和生产制备超级电容器电极活性材料中的应用提供参考.方法 综述三维石墨烯的制备方法,阐述其在超级电容器中应用的研究,针对三维结构塌陷问题的解决办法、杂原子掺杂提高材料整体比电容及石墨烯基电容器的理论模拟等方面进行总结.结果 三维石墨烯的制备方法主要有自组装法和模板法,自组装法还原度普遍较低,电容值一般为100~300 F/g;模板法制备的石墨烯比表面积可达500 m2/g以上;多元素掺杂体系在高电流密度下的电容保持率普遍不足80%;关于分级多孔结构的理论模拟研究不足.结论 制备分级多孔结构的三维石墨烯、多元素掺杂体系理论研究、非对称超级电容器的研究及应用将受到学者的关注.  相似文献   

9.
以间苯二酚(R)和甲醛(F)为炭前驱体原料, 通过溶胶-凝胶法制备石墨烯/炭气凝胶复合材料。采用XRD、Raman、SEM和N2吸附/脱附等对样品进行结构表征。结果表明: 石墨烯为R和F的聚合提供形核场所, R和F首先在氧化石墨烯(GO)表面聚合, 随着RF含量的增加, 复合炭气凝胶(RF)结构从石墨烯薄片层为骨架的三维网络, 经RF基炭球包裹于石墨烯的网络结构, 最终转变为球形团簇交联的三维网络。石墨烯/炭气凝胶复合材料的比表面积随着RF的增加先增大后减小。当GO与RF质量比为1︰100时, GO/RF-100用作超级电容器电极材料, 在6 mol/L KOH电解液中的比电容达169 F/g, 具有较好的电容特性。  相似文献   

10.
多孔碳超级电容器具有比电容高和循坏寿命长等优点,是当前研究和应用最广泛的一类超级电容器材料。综述了多孔碳材料的不同制备方法和多样化的多孔碳材料前驱体,并介绍了掺杂石墨烯、过渡金属氧化物(TMDs)、过渡金属碳化物或氮化物(MXene)及杂原子等手段来改善碳基电极的离子传输能力,对其在电容器中的应用进行了总结。  相似文献   

11.
本文综述了生物质和废弃物制备炭材料及其在超级电容器、锂离子电池领域应用研究进展。具有天然分级结构的生物质包括海产品和农业废弃物以及煤和重质油的副产物已被广泛应用于制备炭材料的前驱体。本文介绍了多种炭材料包括零维碳量子点、一维炭纤维、二维炭纳米片以及三维炭框架结构的制备进展,并介绍了炭材料孔结构调控方法研究进展,如KOH活化法、KOH和自模板活化结合法、自活化法、自模板法以及N, O, P杂原子掺杂和共掺杂法,阐述了炭材料的孔结构和杂原子对其电化学性能的影响。最后介绍了生物质和废弃物炭在合成、结构调控、超级电容器和锂离子电池应用中面临的挑战。  相似文献   

12.
黄文欣  李军  徐云鹤 《材料导报》2018,32(15):2555-2564
在能源日益紧张的今天,超级电容器作为一种新型的储能装置,以其寿命长、功率高、绿色环保等特点而备受关注。其中二氧化锰基超级电容器不仅具有高功率密度、长循环寿命、快速充放电等特点,还具有价格低廉、来源广泛、环境友好的优势,在各个领域都拥有非常广阔的应用前景和经济价值。然而因受到二氧化锰材料自身导电性和比表面积的限制,二氧化锰基超级电容器的比电容与理论值相差较大;同时其结构不稳定也造成循环稳定性较低。针对上述问题,目前对于二氧化锰超级电容器的研究主要集中于寻找简单可控的电极制备方法以提高电极的导电性、比电容、循环稳定性等电化学性能,以及设法综合利用各种电极材料的优点发挥其协同效应等方面。探究简单可控的电极制备方法是获得高质量二氧化锰基超级电容器的研究的首要任务,常见的方法有溶胶-凝胶法、水热合成法、化学沉淀法、低温固相法和电化学沉积法。溶胶-凝胶法制备的样品纯度高,但是受干燥条件的影响较大,易团聚。化学沉淀法可直接得到化学成分均一、分布均匀的粉体材料,但是对合成温度要求较高,也易发生团聚。低温固相法制备电极粉末改善了高温时产物粒子易快速生长、团聚的问题,但是存在接触不均匀、反应不充分的缺点。水热法简单、成本低,是目前制备粉末电极较为常用的方法。这些制备方法各有千秋,但是这类先制备出粉末再合成电极的方式不仅延长了工艺,而且不符合节能环保的原则,相比之下电沉积法可直接将二氧化锰沉积到基底上,操作简单且参数灵活可控。二氧化锰电极材料的改性问题一直颇受关注,目前掺杂和复合仍是改性方面较为常用的方法。例如向二氧化锰中掺杂少量的金属元素可以提高电极的导电性,而与某些导电聚合物复合则可以有效地解决二氧化锰因结构不稳定而易在电解液中溶解的问题。掺杂物质与复合材料的选择、掺杂和复合方式以及与二氧化锰材料的配比是获得高质量电极的关键。当前二氧化锰基超级电容器电极材料不仅仅只有二氧化锰这一种,而是结合了各种炭材料、复合材料或者金属及其氧化物等物质,组合形成多元复合材料以利用各组分的特点,这对优化电容器性能有很大的帮助。此外,学者们还发现电解液的选择对扩大超级电容器的电化学窗口、提高电容器能量密度和功率密度有很大的影响。本文简单介绍了二氧化锰基超级电容器的储能机理,综述了电容器电解液与电极的制备和改性研究现状,此外还介绍了二氧化锰基超级电容器的组装方式,并对未来的研究趋势提出了展望。  相似文献   

13.
超级电容器是一种高性能的能量存储设备,因具有高功率密度、快速的充放电速率、高安全性能、优异的循环稳定性和较宽的工作温度范围等优点备受人们关注和青睐,并在清洁能源、电动汽车、无线通信、航空航天、军事和消费电子等领域得到了广泛的应用。电极材料是决定超级电容器储能性能的关键因素之一,开发新型、高效电极材料的已成为国内外研究的热点。传统电极材料经过长期的发展虽取得了一些技术革新和突破,但仍存在碳基电极容量不大、过渡金属化合物导电性不高、导电聚合物循环稳定性不足等缺点。石墨烯是一种由单层碳原子构成的碳纳米材料,具有优异的物理化学性能,是超级电容器电极材料的新宠。三维石墨烯不仅能保留单层或少数层石墨烯独特的物理化学性质,而且具有低密度、多孔性、高度连通结构和微反应环境等特性,在超级电容器领域备受关注,比石墨烯具有更加广泛的应用前景。目前,三维石墨烯的制备方法主要有湿化学技术、CVD技术和3D打印技术等。其中,3D打印技术凭借其在空间构型设计和化学组成优化方面的独特优势,在生物医药和能源器件等领域迅速发展。基于3D打印的石墨烯基材料不仅具有良好的孔道分布和优异的力学性能,而且其独特的3D打印结构还能...  相似文献   

14.
聚苯胺(PANI)具有高导电率、高比电容、快速的掺杂-脱掺杂能力和原料经济易得等特性,但是作为电极材料进行循环充放电时易发生材料的形变,循环稳定性差。三维(3D)石墨烯具有比表面积大、电子迁移速率高、透光性和柔韧性好、机械性能稳定等特点。将两者进行三维结构设计以提高复合材料的电化学性能是目前研究的热点。介绍了3D石墨烯材料的制备方法,并综述了3D石墨烯-聚苯胺复合材料的制备方法及在超级电容器电极材料中的应用现状,对其存在的问题和未来发展方向进行了展望。  相似文献   

15.
作为超级电容器的电极材料,导电聚合物具有成本低、容量高、快速充放电和安全性高等优点。聚噻吩是其中一类重要的聚合物。综述了近年来噻吩聚合物及其与无机材料复合的电极材料应用于超级电容器中的研究进展,并指出具有p型和n型掺杂的噻吩聚合物及其复合材料是聚合物超级电容器电极材料的发展方向。  相似文献   

16.
主要概述了石墨烯基功能性复合材料的研究进展,着重介绍石墨烯与聚合物、其他碳质材料、金属纳米粒子以及金属化合物纳米粒子组成的石墨烯基复合材料的研究进展及其应用前景。  相似文献   

17.
石墨烯复合材料的制备及应用研究进展   总被引:1,自引:0,他引:1  
石墨烯是碳原子以sp2杂化连接而成的单原子层结构,这一独特的二维结构使得石墨烯具有优异的光电性能、热稳定性以及化学性能.石墨烯复合材料的制备、性能和应用成为近年的研究热点.本文综述了石墨烯复合材料的制备方法,包括石墨烯/高分子复合材料、石墨烯/金属(金属氧化物)复合材料、石墨烯三元复合材料,以及石墨烯复合材料在锂电池、电容器、光伏材料、传感器等方面的应用研究进展,指出了石墨烯复合材料研究的重要方向.  相似文献   

18.
纳米纤维素是一类具有大比表面积、高反应活性、高机械强度、良好生物相容性、优异热稳定性以及可降解等优异性能的纳米高分子材料。根据其来源、特性、制备方法,可大致分成纤维素纳米纤丝(CNF)、纤维素纳米晶体(CNC)、细菌纤维素(BC)三类,三者的微观形态和尺寸大小有所差异。纳米纤维素凭借其高抗张强度,在复合增强材料的填充应用上表现出优异的机械柔韧性,借此将其与导电聚合物、碳材料和金属化合物等导电物质复合,可形成具有优异力学性能和电化学性能的导电复合材料,这类材料在柔性储能器件等领域有着广泛的应用前景。本文重点回顾了纳米纤维素与多种导电物质复合制备导电复合材料的工艺方法及电化学性能表征,并概述了基于纳米纤维素的导电复合材料在柔性储能器件锂离子电池(LIBs)和超级电容器(SCs)上的应用研究进展,在总结相关研究的基础上进一步讨论了上述制备应用过程中存在的问题,并针对此类问题展望了纳米纤维素基导电复合材料在今后研究应用的重点和方向。  相似文献   

19.
符若文  刘晓方  吴丁财 《功能材料》2004,35(Z1):1772-1775
综述炭气凝胶的制备工艺,介绍炭气凝胶在超级电容器中的应用,论述了炭气凝胶制备工艺-结构-电极性能的关系.  相似文献   

20.
石墨烯基气凝胶(GAs)不仅具有超高的比表面积和孔隙率、高导电性、高比热容、低密度,而且还有优异的力学性能、稳定的化学性质,在超级电容器、催化剂载体、吸波材料等方面有广阔的应用。针对石墨烯基气凝胶的制备方法(如模板法、自组装法、3D打印法、溶胶-凝胶法等),以及在环境净化、能源及催化等领域的应用和GAs的发展前景进行了综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号