共查询到20条相似文献,搜索用时 8 毫秒
1.
以造纸黑液木质素和NiCl2·6H2O为原料、经1200℃高温烧结制备Ni掺杂木材陶瓷, 并用KOH进行活化处理, 得到呈泡沫状的三维网络结构的Ni掺杂活化石墨化木材陶瓷。采用X射线衍射(XRD)、拉曼光谱(RS)、扫描电镜(SEM)、透射电镜(TEM)、比表面积测试仪及电化学工作站等对其性能进行分析与表征。结果表明: Ni既参与构筑木材陶瓷骨架, 又对无定形碳进行催化石墨化。所制备样品的石墨化倾向明显, 有石墨烯片层结构出现, 部分晶格间距接近理想石墨的点阵参数。同时, 活化处理可以有效地形成多层次孔隙结构, 增加微孔与超微孔数量。800℃活化3 h后, 样品中的孔径主要集中在3.60 nm左右, 比表面积从359 m2·g-1提高到856 m2·g-1。活化能够改善Ni掺杂木材陶瓷的电化学性能, 在20 mV·s-1扫描速率下, 其比电容为153.8 F·g-1, 是未活化样品的2.2倍。 相似文献
2.
木质素基模板炭的制备及电化学性能 总被引:1,自引:0,他引:1
以造纸黑液碱木质素为碳前驱体、硅藻土为模板,采用高温烧结和水热活化制备有序排列的硅藻土模板炭.利用X射线衍射(XRD)、拉曼光谱(RS)、扫描电子显微镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)等对其进行分析与表征,并通过测试恒电流充放电、循环伏安法、交流阻抗、循环寿命等来研究其电化学性能.结果表明:所制备的模板炭生长在硅藻土的孔隙中,呈现出中空管状结构.当木质素/硅藻土质量比为1:1,将其于900℃烧结2 h后,再通过180℃水热反应活化10 h,制备的模板炭电极材料具有较好的电化学性能.在电流密度为0.5 A/g时,该材料的质量比电容可达207.65 F/g;而在电流密度为2 A/g时,经过5000次循环充放电后,其比电容保持率仍达到95.4%,这表明所制备的木质素基模板炭材料具有良好的电化学性能. 相似文献
3.
以木质素、苯酚和甲醛为原料,NaOH为催化剂,溶胶凝胶法制备了木质素酚醛基有机凝胶,经CO2超临界干燥及高温炭化得到了炭气凝胶(LPCA)。采用扫描电镜(SEM)、比表面及孔结构分析仪表征了材料的结构,通过恒流充放电测试了炭材料的电化学性能。结果表明,制备得到的炭气凝胶以微孔和中孔为主,比表面积达356.6m2/g,首次放电比容量为583.94mAh/g,充放电循环30次比容量未见明显的衰减。 相似文献
4.
采用传统氧化物反应法(一步法)和前驱体法(两步法)合成铁掺杂改性的0.075Pb(Zn_(1/3)Nb_(2/3))O_3-0.925Pb(Zr_(0.95)Ti_(0.05))O_3(PZN-PZT)热释电陶瓷,研究制备方法对PZN-PZT热释电陶瓷的微观形貌、相结构及电学性能的影响。XRD结果表明,采用一步法制备的陶瓷不如两步法,前者存在钙钛矿相和少量焦绿石相,后者能有效抑制焦绿石相的生成,陶瓷为纯菱方钙钛矿相。SEM分析进一步证实了两步法能够制备出晶粒分布均匀、晶型饱满的致密陶瓷。结合介电、铁电及热释电性能分析可知,单一钙钛矿结构和均匀紧凑的晶粒结构对陶瓷材料电学性能的增强起着重要的作用。 相似文献
5.
6.
以三嵌段非离子表面活性剂P123为模板,采用水热法制备了Fe3+-SiPO2掺杂纳米TiO2,通过X射线衍射(XRD)、红外光谱(FT-IR)、紫外-可见吸收光谱(UV-Vis)等手段考察了Fe3+-SiO2掺杂纳米TiO2的结构与光学特性.实验结果表明:Fe3+、SiO2掺杂进入TiO2的晶格,可获得高纯度锐钛矿相纳米TiO2.Fe3+和SiO2的加入有助于抑制金红石相的形成和晶粒长大,提高了TiO2的热稳定性.Fe3+-SiO2掺杂将TiO2的光响应范围拓宽至可见光区,提高了纳米TiO2的光催化性能.与纯纳米TiO2相比,Fe3+-SiO2掺杂纳米TiO2光催化降解甲基橙的性能显著提高. 相似文献
7.
以TiCl4为前驱体,以FeCl3为Fe3+源在纳米TiO2的制备过程中掺入不同比例的Fe3+,获得了掺铁量不同的一系列纳米TiO2样品。采用XRD、XRF、HR—TEM、STEMEDS-Mapping等方法对样品的物相、形貌和微结构等进行系统分析与表征。结果表明,在水解沉淀法制备锐钛矿型纳米TiO2的过程中可将Fe3... 相似文献
8.
Fe3+-TiO2薄膜经不同温度退火后的可见光催化性能 总被引:3,自引:0,他引:3
采用溶胶-凝胶法制备了掺杂Fe3+的TiO2薄膜,并在不同温度热处理.用SEM、XPS、UV-vis等分析方法进行结构表征和性能测试,通过降解亚甲基蓝溶液测试其可见光光催化活性.结果表明,723K时掺杂Fe3+的TiO2薄膜已经结晶,粒径为40~50nm.掺杂元素以Fe3+并口Fd2+形式存在于TiO2晶格并取代Ti4+形成Ti-O-Fe键,改变了TiO2的表面态,使TiO2带隙变窄,促进了对可见光的吸收.降解实验结果表明,823K热处理后掺杂铁的TiO2薄膜其光催化活性最好,在25W白炽灯模拟可见光下照射3.0h后,亚甲基蓝溶液的降解率接近30%. 相似文献
9.
10.
采用常规固相法制备(Sr,Ba,Ca)TiO3基压敏陶瓷.用Nb5 离子取代Ti4 离子,Mn作受主掺杂元素的前提下,系统研究了稀土离子La3 施主掺杂对压敏陶瓷结构和性能的影响.结果表明,当La2O3=0.4%(摩尔分数)时,(Sr,Ba,Ca)TiO3基压敏陶瓷可获得良好的电性能:其压敏电压V10mA=11.19V,非线性系数α=2.93,电容C=31.16nF,介电损耗tanδ=0.43%,压敏电压温度系数KV10mA=0.1%/℃. 相似文献
11.
以聚偏氟乙烯-六氟丙烯共聚物(PVDF-HFP)为粘结剂, 用浸涂法在对苯二甲酸乙二醇酯(PET)隔膜上同时涂覆不同粒径的SiO2和Al2O3, 使PET的大孔得到更有效的填充, 充分发挥了两种陶瓷及其粒径的各自优势。系统考察了SiO2与Al2O3相对含量对陶瓷隔膜的表面形貌、孔隙率、吸液率、热稳定性、离子电导率和电化学阻抗谱(EIS)的影响。研究了SiO2/Al2O3为3/7(wt%)的陶瓷隔膜组装成MCMB/LiNi1/3Co1/3Mn1/3O2电池的电化学性能, 并与商业聚丙烯(PP)隔膜对比。结果表明: 该陶瓷隔膜具有更好的综合性能, 100次循环后的容量保持率为93.9%, 10C电流下仍具有82.7 mAh/g的容量, 优于商业PP隔膜。 相似文献
12.
13.
以杨木基木陶瓷为骨架,采用电沉积法组装黑液木质素,经高温烧结和物理活化制备木质素基碳纳米片组装块状木陶瓷电极,并对序列组装机制、结构与形貌、物相构成、电化学储能机制和电化学性能进行了探讨与分析.结果表明:黑液木质素在电场的作用下可按照一定的序列组装在木陶瓷骨架的表面与孔隙中,高温烧结后木质素转化为碳纳米片,部分依然保持有序排列;同时,所制备的木陶瓷电极主要由无定型炭与石墨微晶构成,具有多层次孔隙,且木质素的组装可优化孔隙结构.其中电沉积10 min、1000℃保温烧结2 h、180℃活化6 h的试件具有较好的电化学性能:在扫描速率为0.25 A·g-1时比电容可达141.8 F·g-1;充放电循环1000次后比电容保持率为88.1%;在能量密度为132.6 Wh·kg-1时,功率密度达12.8 W·kg-1,该木陶瓷电极具有较好的储能性能与应用潜力. 相似文献
14.
层状双金属氢氧化物(LDH)因具有组成和结构易于调变等优势而被广泛用作析氧反应(Oxygen evolution reaction,OER)催化剂.通过溶剂热法合成了由二维纳米片组成的花状结构的NiCo-LDH材料,并利用Fe离子对其进行刻蚀,合成了 Fe掺杂的NiCo-LDH.在OER催化性能测试中,与未刻蚀的NiCo-LDH相比,在电流密度为10 mA·cm-2时,Fe掺杂的NiCo-LDH材料的过电位仅为273 mV,塔菲尔斜率为98 mV·dec-1,OER性能显著提升.此外,所合成的Fe掺杂的NiCo-LDH材料还表现出良好的长期稳定性,经过16 h的连续测试,其OER催化活性仍然能保持在80%.Fe离子刻蚀使NiCo-LDH纳米片具有较多的边缘缺陷,能够提供更多的边缘位点作为活性中心;并且Fe离子的引入改变了NiCo-LDH的电子结构,增加了 LDH的层间距离,从而有效改善了催化剂的催化活性和动力学性能. 相似文献
15.
以钛酸四正了酯为先驱物,采用溶胶-凝胶法制备了纯TiO2和Fe3+掺杂的纳米TiO2(Fe3+/TiO2)光催化剂,并用XRD、UV-Vis等进行了表征,系统研究了煅烧温度、煅烧时间和Fe3+掺杂量对催化剂在自然光条件下光催化降解甲基橙性能的影响.结果表明,相同煅烧温度下,Fe3+/TiO2的粒径比纯TiO2的粒径小.制备纯TiO2和Fe3+/TiO2的最佳煅烧时间分别为4h和3h,最佳煅烧温度均为773K.适量掺入Fe3+可以显著提高纳米TiO2在自然光条件下的光催化降解活性,Fe3+/TiO2中Fe3+的最佳掺杂量为10.00%,相应的脱色效率为28.37%. 相似文献
16.
针对富锂锰基材料容量保持率不高,倍率性能不好等问题,以Al2O3作为Al源,通过高温固相法制备A13+掺杂的Li1.104-3xAlxMn0.56Ni0.24O2(0≤x≤0.01)正极材料。XRD结果表明掺杂的Al3+成功代替部分Li+进入到富锂锰基正极材料的晶格中。电化学性能测试表明A13+掺杂抑制了Li1.104Mn0.56Ni0.24O2材料在循环过程中电压衰减,同时提高了它的循环性能和倍率性能。Li1.0965Al0.0025Mn0.56Ni0.24O2材料在0.2 C电流密度下循环100次后,放电比容量为234.42 mA·h/g,其容量保持率高达86.32%,而未掺杂的Li1.104Mn0.56Ni0.24O2材料容量保持率仅为67.27%。 相似文献
17.
掺Fe3+附银二氧化钛光催化剂的制备及其光催化活性研究 总被引:1,自引:0,他引:1
采用酸催化溶胶-凝胶法和光化学沉积法相结合制备出了掺Fe3 附Ag纳米TiO2复合粒子,用TEM、XRD、XPS、UV-vis等技术进行了表征.结果表明:纳米粒子粒径约为10~15nm;Fe3 的掺杂能促进TiO2由锐钛矿相向金红石相的转变;改性后的TiO2对光的吸收发生红移,吸收强度明显增大;XPS分析表明附载在TiO2表面的银以Ag0形式存在.以紫外光为光源,甲基橙为目标降解物,评价了催化剂的光催化活性,实验表明,掺Fe3 附Ag的TiO2比纯TiO2及仅掺Fe3 或仅附Ag的TiO2能显示出更高的光催化活性;且掺Fe3 0.4%、附银1%(摩尔分数)的催化剂的光催化活性最高. 相似文献
18.
掺Fe3+A-TiO2的水热法制备及其光催化性能研究 总被引:1,自引:0,他引:1
采用水热法以硫酸钛为原料制备了掺Fe3+ TiO2粉末,并通过SEM、TEM和XRD测定了样品的形貌和晶型,研究了自制掺Fe3+TiO2对甲基橙溶液的光催化降解作用.结果表明,所制备的TiO2为锐钛矿型(即A-TiO2).254nm紫外光照射下,用自制掺Fe3+A-TiO2降解甲基橙溶液的最佳条件是:在12mg/L甲基橙溶液中加入0.050g掺5%Fe3十(摩尔分数)的A-TiO2粉末,28℃恒温反应4h,降解率达到62.52%.同样条件下不加A-TiO2时甲基橙自身光解率为16.73%,加入纯A-TiO2时甲基橙降解率为51.75%,而加入掺杂10%Fe3+的A-TiO2其降解率为59.01%. 相似文献
19.
采用水热法制备了钛酸钠纳米线、TiO2纳米线和La3+/TiO2纳米线。利用XRD、SEM、HREM、XPS和UV-Vis等技术手段对样品微观结构、光学性能和表面元素价态进行了分析;并以甲基橙溶液为目标污染物测试其光催化性能。研究表明,实验合成了直径为50~200nm、长度为十几微米到几十微米的钛酸钠纳米线,并通过对微观结构的分析,初步确定其分子式为Na2Ti3O7,钛酸钠纳米线经过氢离子和镧离子进行离子交换并高温烧结得到了TiO2纳米线和La3+/TiO2纳米线;钛酸钠纳米线对甲基橙溶液几乎没有光催化降解作用,而TiO2纳米线具有较高的光催化活性,其中样品La3+/TiO2纳米线光催化性能最强。 相似文献