首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Materials Letters》2006,60(25-26):3197-3201
Oxidation behavior of a three dimensional (3D) Hi–Nicalon/SiC composite with CVD SiC coating was investigated in the simulated air using a thermogravimetric analysis (TGA) device. Below 1100 °C, the oxidation kinetics was controlled by gas diffusion through the defects in the SiC matrix and coating and resulted in the consumption of PyC interphase. The residual flexural strength did have not a remarkable fluctuation and the relationship between the residual strength to temperature and weight change to temperature of the 3D Hi–Nicalon/PyC/SiC composite indicated the same regularity. Above 1200 °C, the oxidation kinetics was controlled by oxygen diffusion through the SiO2 scale formed on the SiC coating and matrix. And the residual flexural strength of the composites was governed by the strength degradation of the Hi–Nicalon fiber. After oxidation, the fracture displacement in flexural tests increased with the weight loss increasing and the fracture mode showed a non-brittle pattern.  相似文献   

2.
Carbon fiber reinforced multilayered (PyC–SiC)n matrix (C/(PyC–SiC)n) composites were prepared by isothermal chemical vapor infiltration. The phase compositions, microstructures and mechanical properties of the composites were investigated. The results show that the multilayered matrix consists of alternate layers of PyC and β-SiC deposited on carbon fibers. The flexural strength and toughness of C/(PyC–SiC)n composites with a density of 1.43 g/cm3 are 204.4 MPa and 3028 kJ/m3 respectively, which are 63.4% and 133.3% higher than those of carbon/carbon composites with a density of 1.75 g/cm3. The enhanced mechanical properties of C/(PyC–SiC)n composites are attributed to the presence of multilayered (PyC–SiC)n matrix. Cracks deflect and propagate at both fiber/matrix and PyC–SiC interfaces resulting in a step-like fracture mode, which is conducive to fracture energy dissipation. These results demonstrate that the C/(PyC–SiC)n composite is a promising structural material with low density and high flexural strength and toughness.  相似文献   

3.
Abstract

The oxidation behaviour of a three-dimensional woven C/SiC composite protected with an SiC seal coating and with an SiC coating combined with an SiO2–B2O3 glassy coating have been respectively investigated through an experimental approach based on mass and flexural strength changes. Three main temperature domains exist for C/SiC composites protected with an SiC seal coating. At low temperatures (<700°C), the mechanisms of reaction between carbon and oxygen control the oxidation kinetics. At an intermediate temperatures (between 700 and 1100°C), the oxidation kinetics are controlled by gas phase diffusion through a network of microcracks in the SiC matrix and coating. At high temperatures (>1100°C), the oxidation kinetics are controlled by oxygen diffusion through the SiO2 scale formed on the SiC coating. Composites of C/SiC with an SiC/(SiO2–B2O3) coating exhibit better oxidation resistance. The filling of the pores and the microcracks and the flow of the glassy coating at higher temperatures result in a global decrease of mass loss in the composites. By researching the relationship between the residual flexural strength and the mass variation in different temperature ranges, it is shown that the change in the residual flexural strength is dominated by the degradation of carbon phase.  相似文献   

4.
Glass fiber reinforced polymetalphosphate matrix composites prepared by a simple process displayed excellent thermal insulating and mechanical properties. Low-viscous Al3Cr(H2PO4)x=9,12 binders were prepared by dissolving Al(OH)3 and Cr(OH)3 or CrO3 in 85% phosphoric acid, and mixed with Al2O3 and Cr2O3 fillers. The glass fiber pre-pregs impregnated by the binder solution were laid-up and cured at 150–200 °C for 12 h under pressure, which are similar conditions to those used for carbon fiber/phenolic resin matrix composites. The composites cured using the hot-press or autoclave showed outstanding hygroscopic resistance even after standing in air for 30 days, due to the chemical stability of the cured network. Hot-press cured composites with higher density exhibited maximum flexural strengths of 155 MPa and thermal conductivity in the range 1.12–3.45 W/mK, while the porous autoclave cured composites displayed 60–77 MPa and 0.4–0.6 W/mK, respectively.  相似文献   

5.
The main objective of this study is to introduce a new natural fiber as reinforcement in polymers for making composites. Wildcane grass stalk fibers were extracted from its stem using retting and chemical (NaOH) extraction processes. These fibers were treated with KMnO4 solution to improve adhesion with matrix. The resulting fibers were intentionally reinforced in a polyester matrix unidirectionally, and the flexural properties of the composite were determined. The fibers extracted by retting process have a tensile strength of 159 MPa, modulus of 11.84 GPa, and an effective density of 0.844 g/cm3. The composites were formulated up to a maximum fiber volume fraction of 0.39, resulting in a flexural strength of 99.17 MPa and flexural modulus of 3.96 GPa for wildcane grass fibers extracted by retting. The flexural strength and the modulus of chemically extracted wildcane grass fiber composites have increased by approximately, 7 and 17%, respectively compared to those of composites made from fibers extracted by retting process. The flexural strength and the modulus of KMnO4-treated fiber composites have increased by 12 and 76% over those of composites made from fibers extracted by retting process and decreased by 3 and 48% over those of composites made from fibers extracted by chemical process, respectively. The results of this study indicate that wildcane grass fibers have potential as reinforcing fillers in plastics in order to produce inexpensive materials with high toughness.  相似文献   

6.
The results of studies on the strength at bending and volumetric electrical resistance of composite materials based on AlN–SiC with additions from 2 to 6 wt % Y2O3. It is shown that at increasing the content of Y2O3 in the mixture from 2 to 6 wt % the compaction of the composites intensifies their electrical resistance from (1.4–5.4) × 106 to (1.8–5.94) × 107 Ohm·cm (at 20°C), which at the increasing temperature decreases exponentially and at 800°C for all composites is (5–6) × 104 Ohm·cm. It was determined that materials with the smaller content of Y2O3 have somewhat higher value of the ultimate strength during bending, namely, 110 MPa.  相似文献   

7.
Macro-defect-free (MDF) composites, developed and patented by scientists from Imperial Chemical Industries in the early 1980s, are very high strength cement–polymer composites. The preparation of MDF composites is different from the production of conventional cement paste in that high shearing with a roller mill as well as moderate pressure (about 5 MPa) and moderate temperature (about 80–100 °C) are applied during the production. Very low water/cement ratio (w/c) levels are achieved (as low as 0.10) in this composite, much lower than in other cement-based materials. Of the many unique properties exhibited by MDF composites, surely the most remarkable is their high flexural strength. This is generally attributed to their low porosity and to cross-linking reactions between cement and polymer. MDF composites may reach a flexural strength of 200–300 MPa levels, whereas ordinary cement pastes have generally around 5–10 MPa. However, serious durability problems are observed in MDF composites, particularly their significant reductions in strength when immersed in water. Comprehensive information about MDF composite research will help in understanding the reasons behind the high strength, microstructure and water sensitivity of MDF composites. This review summarizes the materials, production methods, properties, microstructure, hydration reactions, durability and potential application areas of MDF composites as published since 1981.  相似文献   

8.
A processing route for ceramic matrix composites is developed based uponpolymer pyrolysis. Three types of NicalonTM fiber woven fabrics,—i.e., uncoated, carbon-coated, and carbon/SiC-coated—are impregnated with apolysilazane solution. Thus-formed prepregs are then cut, laminated,pressed and fired to 1000 °C in a nitrogen atmosphere. Upon pyrolysis,polysilazane converts to a Si3N4-based ceramic matrix with 60 wt% yield. The composites made with uncoated NicalonTM fibers have poor flexural andtensile strength (103 and 19 MPa, respectively) and show brittle fracturebehavior. That is due not only to the poor fiber-matrix interface but alsoto processing-induced fiber damage. For carbon and carbon/SiC-coatedNicalonTM fiber composites, the coating layers on the fiber surfacemanipulate the appropriate fiber-matrix interface and also protect thefibers from damage during polymer pyrolysis, so these composites exhibithigher flexural (250 and 274 MPa, respectively) and tensile (138 and 196 MPa, respectively) strength. Also, the load stress-deflection behavior ofcomposites with two types of coated fibers cause noncatastrophic fracture.  相似文献   

9.
It is known that SiC whisker/Al2O3 matrix composites can oxidize in air at high temperature and then form oxidation layers on their surfaces. Oxidation treatment has been experimentally performed in air at 1450 °C for a pre-determined time. The results show that the surface layer is in a state of compressive residual stress. The oxidized specimens have better resistance to thermal shock damage than the non-oxidized specimens. However, the surface oxidation can degrade the room-temperature flexural strength.  相似文献   

10.
In this paper, midrib of coconut palm leaves (MCL) was investigated for the purpose of development of natural fiber reinforced polymer matrix composites. A new natural fiber composite as MCL/polyester is developed by the hand lay-up method, and the material and mechanical properties of the fiber, matrix and composite materials were evaluated. The effect of fiber content on the tensile, flexural, impact, compressive strength and heat distortion temperature (HDT) was investigated. It was found that the MCL fiber had the maximum tensile strength, tensile modulus flexural strength, flexural modulus and Izod impact strength of 177.5MPa, 14.85GPa, 316.04MPa and 23.54GPa, 8.23KJ/m2 respectively. Reinforcement of MCL enhanced the mechanical properties of pure polyester, including that of tensile strength (by 26%), tensile modulus (by 356%), flexural strength (by 41.81%), flexural modulus (by 169%) and Izod impact strength (by 23 times), but the compressive strength was adversely affected. HDT decreased due to fiber loading, but increased with weight fraction of fiber content. Moreover, the experimental results were compared with theoretical model (Rule of mixture) and other natural fiber /polyester composites.  相似文献   

11.
Three-dimensional (3D) silicon carbide fiber reinforced silicon carbide matrix (SiCf/SiC) composites, employing KD-1 SiC fibers (from National University of Defense Technology, China) as reinforcements, were fabricated by a combining chemical vapor infiltration (CVI) and vapor silicon infiltration (VSI) process. The microstructure and properties of the as prepared SiCf/SiC composites were studied. The results show that the density and open porosity of the as prepared SiCf/SiC composites are 2.1 g/cm3 and 7.7%, respectively. The SiC fibers are not severely damaged during the VSI process. And the SiC fibers adhere to the matrix with a weak interface, therefore the SiCf/SiC composites exhibit non-catastrophic failure behavior with the flexural strength of 270 MPa, fracture toughness of 11.4 MPa·m1/2 and shear strength of 25.7 MPa at ambient conditions. Moreover, the flexural strength decreases sharply at the temperature higher than 1200 °C. In addition, the thermal conductivity is 10.6 W/mk at room temperature.  相似文献   

12.
Abstract

Three-ply composites consisting of a FeCrAlY matrix and continuous single crystal Al2O3 (sapphire) fibers were cyclically oxidized at 1,000° and 1,100°C for up to 1,000 1-h cycles. FeCrAlY matrix only samples were also fabricated and tested for comparison. Fiber ends were exposed at the ends of the composite samples. Following cyclic oxidation, cracks running parallel to and perpendicular to the fibers were observed on the large surface of the composite. In addition, there was evidence of increased scale damage and spallation around the exposed fiber ends, particularly around the middle ply fibers. This damage was more pronounced at the higher temperature. The exposed fiber ends showed cracking between fibers in the outer plies, occasionally with Fe and Cr-rich oxides growing out of the cracks. Large gaps developed at the fiber–matrix interface around many of the fibers, especially those in the outer plies. Oxygen penetrated many of these gaps resulting in significant oxide formation at the fiber–matrix interface far within the composite sample. Around several fibers, the matrix was also internally oxidized showing Al2O3 precipitates in a radial band around the fibers. The results show that these composites have poor cyclic oxidation resistance due to the CTE mismatch and inadequate fiber–matrix bond strength at temperatures of 1,000°C and above.  相似文献   

13.
Abstract

Some properties of the remarkable Ti3SiC2 based ceramic synthesised by hot pressing of elemental Ti, Si, and C powders have been investigated. Its flexural strength by using three point bending tests and fracture toughness by using single edge notched beam tests were measured at room temperature to be in the range 310–427 MPa and about 7·MPa m1/2, respectively. This material is a relative 'soft' ceramic with a low hardness of 4 GPa. Ti3SiC2 is similar to the soft metals and is a damage tolerant material that is able to contain the extent of microdamage. An oxidation test has been performed in the temperature range 1000–1400°C in air for 20 h. The oxidation resistance below 1100°C was good. Two oxidized layers were formed, the outer layer consisting of pure rutile-type TiO2, and the inner layer a mixture of SiO2 and TiO2. The average coefficient of thermal expansion (CTE) of Ti3SiC2 was measured to be 9·29 × 10?6 K?1 in the temperature range 25–1400°C. The thermal shock resistance of Ti3SiC2 was evaluated by quenching the samples from 800°C, 1200°C, and 1400°C, respectively. The retained flexural strength drops dramatically at quenching temperature, but shows a slight increase after quenching from 1400°C compared with quenching from 800°C and 1200°C.  相似文献   

14.
SiC matrix composites reinforced with the various borides of the transition metals in group IV a-VI a, which were synthesized from the transition metal oxide, boron carbide and carbon mixed with SiC powder. Dense composites containing boride particulates of titanium, zirconium, niobium and chromium were prepared through reactive hot-pressing. The morphology of the internally synthesized boride particles reflected that of the starting oxide powders. SiC-NbB2 composites with four-point flexural strength of 500 to 600 MPa and better oxidation resistance than SiC-TiB2 were prepared even through pressureless sintering process. Pressureless-sintered and HIPed SiC-20 vol% NbB2 exhibited the four-point flexural strength of 760 MPa at 20 °C and 820 MPa at 1400 °C.  相似文献   

15.
C/SiC–ZrB2 composites prepared via precursor infiltration and pyrolysis (PIP) were treated at high temperatures ranging from 1200 °C to 1800 °C. The mass loss rate of the composites increased with increasing annealing temperature and the flexural properties of the composites increased initially and then decreased reversely. Out of the four samples, the flexural strength and the modulus of the specimen treated at 1400 °C are maximal at 216.9 MPa and 35.5 GPa, suggesting the optimal annealing temperature for mechanical properties is 1400 °C. The fiber microstructure evolution during high-temperature annealing would not cause the decrease of fiber strength, and moderate annealing temperature enhanced the thermal stress whereas weakened the interface bonding, thus boosting the mechanical properties. However, once the annealing temperature exceeded 1600 °C, element diffusion and carbothermal reduction between ZrO2 impurity and carbon fibers led to fiber erosion and a strong interface, jeopardizing the mechanical properties of the composites. The mass loss rate and linear recession rate of composites treated at 1800 °C are merely 0.0141 g/s and 0.0161 mm/s, respectively.  相似文献   

16.
A Tyranno ZMI fiber/TiSi2–Si matrix composite was fabricated via melt infiltration (MI) of a Si–16at%Ti alloy at 1375 °C under vacuum. The Si–Ti alloy was used as an infiltrant to conduct MI processing below 1400 °C and inhibit the strength degradation of the amorphous SiC fibers. The alloy matrix formed was dense and comprised primarily of TiSi2–Si eutectic structures. The TiSi2–Si matrix composite melt-infiltrated at 1375 °C showed a pseudo-plastic tensile stress–strain behavior followed by final fracture at ∼290 MPa and ∼0.9% strain. When the MI temperature was increased to 1450 °C, however, substantial reduction in the stiffness and ultimate strength occurred under tensile loading. Microstructural observations revealed that these degradations were attributed to the damages that occurred on the reinforcing fibers and pyrolytic carbon interfaces during the MI process. The present experimental results clearly demonstrated the effectiveness of the low-temperature MI process in strengthening Tyranno ZMI fiber composites and reducing the processing cost.  相似文献   

17.
The toughening effect of the short carbon fibers in the ZrB2–ZrSi2 ceramic composites were investigated, where the ZrB2–ZrSi2 ceramics without carbon fibers were used as the reference. The mechanical properties were evaluated by means of flexural and SENB tests, respectively. The microstructure was characterized by SEM equipped with EDS. The results found that the short carbon fibers were uniformly incorporated in the ZrB2–ZrSi2 matrix and the relative density was about 97.92%. The flexural strength of short carbon fiber-reinforced ZrB2–ZrSi2 composites is 437 MPa; the fracture toughness and the work of fracture are 6.89 MPa m1/2 and 259 J/m2, respectively, which increased significantly in comparing with composites without fibers. The microstructure analysis revealed that the improved fracture toughness could be attributed to the fiber bridging, the fiber–matrix interface debonding and the fiber pullout, which consumed more fracture energy during the fracture process.  相似文献   

18.
SiO2 matrix composites doped with AlN particles were prepared by hot-pressing process. Mechanical properties of SiO2 matrix composites can be greatly improved by doping with AlN particles. Flexural strength and fracture toughness of 30 vol%AlN-SiO2 composite sintered at 1400°C reached 200 MPa and 2.96 MPa·m1/2. XRD analysis indicated that, up to 1400°C, no chemical reaction occurred between SiO2 matrix and AlN particles suggesting an excellent chemical compatibility of SiO2 matrix with AlN particles. The influences of hot-pressing temperature and the content of AlN particles on dielectric properties of SiO2-AlN composites were studied. The temperature and frequency dependency of dielectric properties of SiO2-AlN composites were also studied. Residual flexural strength of SiO2-AlN composites decreased with increasing temperature difference. The critical temperature difference was estimated about 600°C.  相似文献   

19.
In this paper, SiO2f/SiO2 composites reinforced by 3D four‐directional braided quartz preform were prepared by the silica sol‐infiltration‐sintering method in a relatively low sintering temperature (450 °C). To characterize the mechanical properties of the composites, mechanical testing was carried out under various loading conditions, including tensile, flexural and shear loading. The microstructure and the fracture behaviour of the 3D four‐directional braided SiO2f/SiO2 composites were studied. The tensile strength, flexural strength and the in‐plane shear strength were 30.8 MPa, 64.0 MPa and 22.0 MPa, respectively. The as‐fabricated composite exhibited highly nonlinear stress–strain behaviour under all the three types of loading. The tensile and flexural fracture mechanisms were fully discussed. The fracture mode of the 3D four‐directional braided SiO2f/SiO2 composite in the Iosipescu shear testing was based on a mixed mechanism because of the multi‐directivity of the composite. Owing to low sintered temperature, the fibre/matrix interfacial strength was weak. The SiO2f/SiO2 composites showed non‐catastrophic behaviour resulting from extensive fibre pull‐out during the failure process.  相似文献   

20.
《Composites Part A》2007,38(3):730-738
Polymer layered silicate nanocomposites can improve the flexural and compressive strength of continuous fibre reinforced composites by means of increasing the matrix modulus. A three-phase thermoplastic composite consisting of a main reinforcing phase of woven glass fibres and a polyamide 6 (PA6) nanocomposite matrix was fabricated. Flexural testing of a conventional PA6 fibre composite has shown a decrease of the flexural strength upon increasing temperature. This behaviour is associated with the decrease of the matrix modulus, especially above Tg. The nanocomposite used in this study has a modulus that is much higher than unfilled PA6, even above Tg and after moisture conditioning. The results showed that the fibre composites with a nanocomposite matrix have a more than 40% increased flexural and compressive strength at elevated temperatures. This also means that the temperature at which the materials can be used is increased by 40–50 °C. Therefore, by using a nanocomposite matrix the high temperature performance of fibre composites can be improved without any change in processing conditions. The combination with other advantages of nanocomposites in areas such as barrier properties, flammability and creep makes this a very attractive approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号