首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
电力电容器噪音产生的原因及预防措施探讨   总被引:1,自引:0,他引:1  
电力电容器是一种使用量大、面广的产品,有个别用户反映电力电容器在 运行中产生了 噪音,对环境有一定影响,本文力图从试验方面揭示电容器产生噪声的原因并提出若干预防 措施。 1 电容器内部噪声产生机理   电容器内部的噪声,从理论上分析,是由于电场的作用,使其内部产生振动从而产生噪 声。当电容器加上交流电压时,在电容器内部的电极间将有静电力的作用产生,从而使电 容器内部的元件产生振动,这种元件的振动将传给外壳而使箱壁振动并形成噪声,再从外壳 辐射出去。   在电容器的两电极间单位面积上所作用的静电力具有以下的关系:  相似文献   

2.
在高电压、大容量的直流输电系统中,交流侧谐波电流大,滤波电容器数量多,使得交流滤波电容器装置成为换流站可听噪声的主要来源之一。对近年来电容器振动与噪声研究进行了总结。通过分析排除了电容器内部的磁力作用和电容器心子与外壳间的电磁力影响,得出内部静电力是电容器振动与噪声的激励源。从功能转换的角度推导得出电容器极板受力与电压平方成正比。根据电容器振动与噪声特性及产生机理,分析了影响电容器振动噪声的主要因素,包括谐波频率与相位、浸渍剂、压紧系数和安装方式等。最后,论述了目前的噪声预估方法,并介绍了几种主要的降噪措施。综上所述,电容器内部的振动与传递过程是目前其减振降噪研究的重要内容,对电容器装置噪声的预估和降噪措施的研制均具有指导意义。  相似文献   

3.
换流站中电容器装置噪声水平计算方法的研究   总被引:19,自引:1,他引:19  
滤波、并联电容器装置的噪声是换流站中噪音来源的主要因素之一,有必要对其计算方法进行研究。文中介绍了电容器振动及噪声产生的机理,即:电极间的电场力将使电容器的外壳振动并最终变为噪声辐射出去;根据电容器在机械力激励作用下其表面的振动响应,计算得到了电容器外壳振动的频响函数以及在电容器流过特定电流时其外壳的振动响应;提出了电容器表面振动速度与其产生的噪声之间的关系,并由此计算了单台电容器在流过含有高次谐波分量的电流时的噪声水平;对一滤波电容器装置的噪声水平进行了计算,结果表明利用文中提出的方法可以有效、方便地计算电容器及电容器装置的噪声水平,为换流站的建设提供参考;文中最后对灵宝换流站中滤波电容器装置的噪声水平进行了测量,并与计算值进行了比较,分析了二者产生差异的原因,验证了文中所提出方法的正确性。  相似文献   

4.
电容器装置的噪声是换流站中噪声来源的主要因素之一,而对单台电容器噪声水平的计算方法进行研究对合理评估整个电容器装置的噪声水平有着重要的意义。本文从单台电容器噪声的产生机理入手,即电极间的电场力将使电容器的外壳振动并最终变为噪声辐射出去,分析了噪声水平与表面振动信号之间的关系并给出其计算公式。在实验室建立了电容器表面振动和噪声信号测试系统,测量了在不同条件下电容器表面振动加速度信号,通过频谱分析验证了测得振动数据的有效性。根据文中的计算方法计算得到单台电容器的A计权声压级水平,并与半消声室内的实测噪声数据进行比较分析,验证了该计算方法的正确性。  相似文献   

5.
滤波电容器是高压直流输电换流站的主要噪声来源,其设备数量多、装置高度高,对换流站周边区域产生显著的可听噪声干扰。为解决滤波电容器可听噪声问题,首先要明确滤波电容器振动的产生机理。文中根据滤波电容器单元的实际结构,分析了电容器在高谐波运行状态下所承受的交变电场力,研究发现其电场力与电容器极板间电压的平方呈正比关系。为了研究滤波电容器单元的振动产生及传递过程,文中先对电容器心子振动进行了测量,发现电容器心子具有多个共振点,当电场力接近这些共振频率时,心子出现显著振动。另外,文中也对电容器外壳振动形态进行了测量,研究发现电容器的内部振动为先传递到电容器底面,再经过底面与侧面间的棱边传递到电容器的侧面。  相似文献   

6.
1 并联电容器的故障判断及原因分析 (1) 渗漏油。并联电容器渗漏油是一种常见的现象,主要是由于产品质量不良,运行维护不当,以及长期运行缺乏维修导致外皮生锈腐蚀而造成的。 (2) 电容器外壳膨胀。由于高电场作用,使得电容器内部的绝缘物游离,分解出气体或者部分元件击穿,电极对外壳放电,使得密封外壳的内部压力增大,导致外壳膨胀变形。 (3) 电容器温升过高。主要原因是电容器过电流和通风条件差。例如,电容器室设计不合理造成通风不良;电容器长时间过电压运行造成电容器过电流;整流装置产生的高次谐波使电容器过电流等。此外,电…  相似文献   

7.
高压直流输电工程中,滤波电容器装置是主要的噪声源之一。对装置中各部分噪声贡献量的分析对装置的整体降噪有重要意义。基于电容器外壳振动数据计算噪声预测公式推导了电容器装置噪声贡献系数的计算公式,并利用某换流站的实测数据对电容器装置中电容器外壳及钢架的噪声贡献进行了分析。结果表明电容器外壳振动是电容器装置噪声的主要来源,装置整体的降噪应从降低单台噪声入手;另一方面电容器固定钢架的噪声贡献也不可忽视,可以从减少振动传递的角度提出降噪措施。  相似文献   

8.
一般认为,在高压直流输电系统中滤波电容器的振动与噪声频谱为谐波电流各频率之间的差频、和频及每个谐波的二倍频。但某些电力电容器在测试中噪声频谱与目前电容器振动噪声机理所预测的并不一致。为此对该现象进行了研究,旨在完善滤波电容器振动与噪声的产生机理。试验结果表明,在加载单频谐波电流时,电容器噪声呈现出2种频率特性:1)噪声频谱为谐波电流频的整数倍;2)噪声频谱为谐波电流的偶数倍。这种电容器噪声特性称为多倍频现象。基于Lagrange力学原理,构建双极板电容器振动的动力学方程。将电容器极板间的电势能作为一种非定常外势能作用,并近似到极板间距的二阶项来反映电场与振动间的耦合作用。通过求解动力学方程,得到与试验结果一致的振动频谱。研究发现,引起电容器出现多倍频现象的原因是电场力与极板振动间存在耦合作用。当加载电流频率或其2倍频与电容器本身固有频率很接近时,多倍频现象更加显著。  相似文献   

9.
电力电容器在交流谐波电压作用下会产生显著的噪声。目前国内外已经研究总结了电容器噪声频率与谐波电压间的关系以及谐波电压幅值对噪声的影响,但并没有对谐波电压的相位对噪声的作用进行研究。本文从电容器振动噪声激励出发,分析了谐波电压相位对电容器极板间电场力关系,进而得到相位对噪声的影响规律。并通过电容器单元的噪声试验,验证了电容器单元加载相位对噪声的影响。试验结果与理论分析相一致,并且发现,对于全奇次谐波的作用,当谐波初相位为0°时,电容器单元声功率最大;当频率相差100Hz谐波的初相位相差180°时,电容器单元声功率最小。  相似文献   

10.
并联电容器是年损坏率极低的电器设备。在实际运行中,如并联电容器损坏,往往先外壳膨胀,当电容器全部元件极间或对壳绝缘击穿,与之并联的电容器组储存的能量以及来自电力系统的短路能量将瞬时注入这台有故障(?)电容器,使其内部压力骤增并超过了电容器外壳所能承受的强度而发生外壳爆破。但是,只要使用时保护措施完善,在运行中电容器外壳爆破是可以避免的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号