首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Ferroelectric thin films such as BST, PZT and PLZT are extensively being studied for the fabrication of DRAMS since they have high dielectric constant. The large and reversible remnant polarization of these materials makes it attractive for nonvolatile ferroelectric RAM application. In this paper we report the characterization of Ba0.7Sr0.3TiO3 (BST) thin films grown by pulsed laser ablation on oxide electrodes. The structural and electrical properties of the fabricated devices were studied. Growth of crystalline BST films was observed on La0.5Sr0.5CoO3 (LSCO) thin film electrodes at relatively low substrate temperature compared to BST grown on PtSi substrates. Electrical characterization was carried out by fabricating PtSi/LSCO/BST/LSCO heterostructures. The leakage current of the heterostructure is studied and a band structure is modeled based on the transport properties of the heterostructure. The dielectric constant of the BST film is found to be 630 at 100 kHz with a loss tangent of 0.04. The capacitance voltage characteristics show high tunability for BST thin films.  相似文献   

2.
This work elucidates the properties of Al/HfO2/GaN metal-oxide-semiconductor capacitors using reactively sputtered HfO2 as a gate dielectric. The influence of GaN surface treatments and the post-annealing of HfO2 films on the leakage current, flat-band voltage, interface trap densities, dielectric constants, and effective oxide charges of the GaN MOS capacitors are presented. The Ga oxynitride on the surface of GaN was effectively removed by chemical solutions that also slightly reduced the dielectric constant, slightly increased the flat-band voltage, eliminated the hysteresis of the capacitance–voltage measurement, and yielded a similar leakage to that without surface treatment. A highest dielectric constant of HfO2 (17) was obtained when the sample was annealed at 600 °C for 20 min, while the lowest interface trap density (5.3 × 1011 cm−2) was obtained when the sample was annealed at 800 °C for 40 min. The leakage mechanism was well fitted by the Schottky emission and Frenkel–Poole emission models at a lower and higher electric field.  相似文献   

3.
Ceramic insulation coatings were produced on Cu/MgB2 wires, which were fabricated by Hyper Tech Research Inc., using Continuous Tube Forming and Filling (CTFF) process, from the solution of Zr, and Y based organometalic compounds, solvent and chelating agent using reel-to-reel sol–gel technique for MgB2 coils. Y2O3–ZrO2/Cu/MgB2 wires were annealed at 700 °C for 30 min with 5.8 °C/min heating rate under 4% H2–Ar gas flow. Residual stresses were examined for Cu/MgB2 wire and YSZ coatings with varying thicknesses. It was observed that displacement values are independent from YSZ thicknesses and the maximum effective stress value is in the Cu region. The surface morphologies and microstructure of samples were characterized using SEM. SEM micrographs of the insulation coatings revealed cracks, pinholes and mosaic structure.  相似文献   

4.
A novel sandwich structure of Ba0.7Sr0.3TiO3/Cr/Ba0.7Sr0.3TiO3 (BST/Cr/BST) was sputtered onto Pt/Ti/SiO2/Si substrate. With the insertion of a Cr layer, the leakage currents are decreased and the thermal stability of the specimens is enhanced. Temperature coefficient of capacitance (TCC) of specimens with BST(200 nm)/Cr(2 nm)/BST(200 nm) multifilms can achieve about 83% lower than those with BST (400 nm) monolayer. However, the dielectric constant of the BST(200 nm)/Cr(2 nm)/BST(200 nm) multifilms decreases to about 37% of that BST monolayer. The leakage current densities under an electric field of 125 kV/cm at 90 °C are 4 × 10− 4 A/cm2 and 9 × 10− 1 A/cm2 for BST (200 nm)/Cr (2 nm)/BST (200 nm) and monolayer BST (400 nm), respectively. X-ray diffraction results indicate the formation of a CrO3 secondary phase after annealing at 700 °C or above in O2 atmosphere. The root causes for the improvement of leakage currents and thermal stability with the insertion of nano-Cr interlayer are explored. The results show the insertion of Cr-nanolayer improves the electric properties for application in capacitors.  相似文献   

5.
Olivine-like LiMnPO4 was prepared from the NH4MnPO4·H2O precursor precipitated from the aqueous solution. Different morphologies of the LiMnPO4 were obtained by the solid-state reaction of the precursor with LiOH (granular, 100–300 nm) and by ion-exchange reaction with eutectic mixture LiCl–LiNO3 (flake-like crystallites up to 10 μm). The morphology and size distribution of the precursor NH4MnPO4·H2O is preserved during ion-exchange, establishing a new preparation route for nanosized LiMnPO4. After ball-milling with carbon black the granular material delivers 30% of the theoretical capacity at C/5. The rate capabilities of the obtained materials are compared with the results from sol–gel synthesis in the light of particle size effect.  相似文献   

6.
Bi2Zn2/3Nb4/3O7 thin films were deposited on Pt/TiO2/SiO2/Si(1 0 0) substrates at a room temperature under the oxygen pressure of 1-10 Pa by pulsed laser deposition. Bi2Zn2/3Nb4/3O7 thin films were then post-annealed below 200 °C in a rapid thermal process furnace in air for 20 min. The dielectric and leakage current properties of Bi2Zn2/3Nb4/3O7 thin films are strongly influenced by the oxygen pressure during deposition and the post-annealing temperature. Bi2Zn2/3Nb4/3O7 thin films deposited under 1 Pa oxygen pressure and then post-annealed at a temperature of 150 °C show uniform surface morphologies. Dielectric constant and loss tangent are 57 and 0.005 at 10 kHz, respectively. The high resolution TEM image and the electron diffraction pattern show that nano crystallites exist in the amorphous thin film, which may be the origin of high dielectric constant in the Bi2Zn2/3Nb4/3O7 thin films deposited at low temperatures. Moreover, Bi2Zn2/3Nb4/3O7 thin film exhibits the excellent leakage current characteristics with a high breakdown strength and the leakage current density is approximately 1 × 10−7 A/cm2 at an applied bias field of 300 kV/cm. Bi2Zn2/3Nb4/3O7 thin films are potential materials for embedded capacitor applications.  相似文献   

7.
Polycrystalline TiO2 thin films were formed on Pt(1 1 1)/Ti/SiO2/Si by thermal oxidation of Ti films with temperatures ranging from 600 °C to 800 °C. Results of Raman spectra testing indicate that the structure of the oxidized TiO2 films is rutile phase. The resistance switching behaviors (RSB) have been confirmed in Pt/TiO2/Pt structures. A stable RSB with a narrow dispersion of the resistance states and switching voltages was observed in the sample fabricated with the oxidation temperature of 600 °C. The resistance ratios of high resistance states to low resistance states are larger than 103 with the set and reset voltage as low as 2.5 V and 0.6 V, respectively.  相似文献   

8.
Screen printed Ba0.6Sr0.4TiO3 (BST6/4) thick films were fabricated by reactive sintering at a low temperature below 900 °C. The dielectric properties in radio frequency range were measured on samples of sandwich structure MIM capacitors by impedance analyzer, while that in microwave frequency range were measured on samples of thick films without top and bottom electrodes by split-post dielectric resonator method. The thick films exhibited a low permittivity, while at the same time, maintained a high tunability. The permittivity and dielectric loss at 1 MHz were 228.8 and 0.007, respectively. The corresponding values measured at 9.9 GHz were 82.24 and 0.109, respectively. The tunability was as high as 72.4% (150 kV/cm, 10 kHz). This method provides a simple and effective route to obtain thick films with great potential in applications in Low Temperature Co-fired Ceramic (LTCC) and microwave tunable devices.  相似文献   

9.
In this paper, the authors report the synthesis of Li3VO4 by the citrate sol–gel method and solid-state reaction method. The powder and sinter samples were characterized by DTA–TG, XRD, TEM, SEM and the AC impedance technique. Compared with the samples obtained by the conventional solid-state reaction, the experimental results show that the Li3VO4 samples prepared by the citrate sol–gel method, of which the diameter of the powders is about 80 nm when the molar ratio of metal ions and citric acid is 1:3, needs a lower a temperature and has a greater ionic conductivity.  相似文献   

10.
NiO thin film was prepared by sol–gel spin-coating method. This thin film annealed at T = 600 °C. The structure of NiO thin film was investigated by means of X-ray diffraction (XRD) technique and scanning electron microscopy (SEM). The optical properties of the deposited film were characterized from the analysis of the experimentally recorded transmittance and reflectance data in the spectral wavelength range of 300–800 nm. The values of some important parameters of the studied films are determined, such as refractive index (n), extinction coefficient (k), optical absorption coefficient (α) and band energy gap (Eg). According to the analysis of dispersion curves, it has been found that the dispersion data obeyed the single oscillator of the Wemple–DiDomenico model, from which the dispersion parameters and high-frequency dielectric constant were determined. In such work, from the transmission spectra, the dielectric constant (), the third-order optical nonlinear susceptibility χ(3), volume energy loss function (VELF) and surface energy loss function (SELF) were determined.  相似文献   

11.
Polyaniline–titanium dioxide (PANI–TiO2) hybrid materials were synthesized in supercritical CO2 using two different methods. In the first method, separately synthesized TiO2 particles were mixed with aniline to perform polymerization in supercritical CO2. The second method included the preparation of aniline–TiO2 hybrids through a sol–gel reaction of titanium isopropoxide in the presence of aniline. Further polymerization of aniline–TiO2 hybrids in supercritical CO2 produced PANI–TiO2 hybrid particles. The final products showed the intrusion of PANI into the internal structure of TiO2. The PANI–TiO2 hybrid materials were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetric analysis (TGA), electrical conductivity (EC), Fourier-transform infrared (FT-IR) and X-ray diffraction (XRD) measurements. PANI–TiO2 nano-composites synthesized with the first method showed a relatively low electrical conductivity of 3.78 × 10−2 S/cm at 20 °C. TGA suggested that the particles contained 40.6% TiO2 by mass and showed a strong interaction at the interface of TiO2 and PANI. The electrical conductivity of the hybrid particles produced using the second method increased to 7.75 × 10−2 S/cm and the TGA results showed 34.4% TiO2 by mass. Through SEM and TEM analyses it was confirmed that the PANI has been interpenetrated into the three-dimensional network of the TiO2 when the second method was used.  相似文献   

12.
200 nm-thick BST thin films were grown on Zr-doped In2O3/SrTiO3 (1 0 0) substrates at 550-750 °C. X-ray diffraction results show that the as-deposited BST films were polycrystalline with random crystallographic orientations. X-ray diffraction patterns reveal that the BST film grown at 650 °C had the best crystalline quality of all the deposition temperatures. Atomic force microscopy and secondary ion mass spectrometry showed that the surface and interface structures of the BST films became rough as the growth temperature increased. The BST film grown at 650 °C showed the best electrical properties, with a dielectric constant of 420 at 1 MHz, dielectric tunability of 32.1%, dielectric loss of 0.015 at 300 kV/cm, and a mean optical transmittance in visible wavelength of 71.3%.  相似文献   

13.
BaTiO3 nanopowders were synthesized from alkoxide solution precursor by sol–gel process. Attempts had been made to understand the synthesis process with the help of thermo gravimetric (TG) and differential scanning calorimetry (DSC). XRD and SEM results showed that the BaTiO3 powders calcined at 700 °C for 2 h were maintained in cubic phase and the average size was 25 nm. The effects of the initial grain sizes of BaTiO3 powders on the phase structures, microstructures and dielectric properties of the ceramics were investigated. The results indicated that both the grain size and the relative density of the ceramics increased with the increase in sintered temperature. The permittivity at room temperature was not sensitive to the grain size.  相似文献   

14.
In this paper, both an Mg film and an Mg nanoblade array have been first fabricated directly on Si substrates and hydrogenated under 20 bar hydrogen pressure at temperatures ranging from 200 °C to 350 °C. It is found that Mg2Si alloy starts to form at T = 200 °C in both the Mg samples, which produces a two-layered structure in the hydrogenated films with the bottom dense layer of Mg2Si. To prevent Mg alloying with Si, a layer of 200 nm thick Ti film was deposited in between the Mg samples and Si substrates as a diffusion barrier, and their hydrogenation results show that Mg2Si formation is suppressed greatly and even eliminated in nanoblades, though Mg2Si hillock defects are observed in the hydrogenated films, which could be formed progressively through the pinholes in the Ti film. To improve the diffusion barrier, a unique structure, consisting of layers of Ti nanorod array and Ti film, has been designed for Mg-based nanostructure deposition. The hydrogen cycling study demonstrates that the structure of 450 nm Ti nanorods on 1 μm Ti film can endure enough number of cycles for the hydrogen storage kinetic and thermodynamic study of film-based Mg nanostructures with/without nanocatalyst, and thus one can gain a fundamental understanding of hydrogen interacting with Mg intrinsic nanostructures and nanocatalysts.  相似文献   

15.
The N-doped TiO2/ZnO composite powder with a molar ratio of Ti to Zn of 3/1 was prepared via sol–gel process and then ammonia treated with NH3 mass fractions of 0%, 7%, and 28% for 24 h at room temperature followed by thermal calcinations in air for 2 h at various temperatures of 500, 600, and 700 °C. The as-prepared composite powder was characterized in detail through thermo-gravimetric analyzer, X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy. The results showed that the phase transformation of anatase to rutile has been successfully retarded via the ammonia treating process, leading to the presence of anatase phase in the composite. The particle crystallization of the composite powder was significantly promoted with the increase of the calcining temperature. The photocatalysis evaluation through MO degradation revealed an enhanced photocatalytic activity for the composite powder that might be related to the good crystallization, the presence of anatase phase, and the particle size reduction of the powder.  相似文献   

16.
Increased turbine inlet temperature in advanced turbines has promoted the development of thermal barrier coating (TBC) materials with high-temperature capability. In this paper, BaLa2Ti3O10 (BLT) was produced by solid-state reaction of BaCO3, TiO2 and La2O3 at 1500 °C for 48 h. BLT showed phase stability between room temperature and 1400 °C. BLT revealed a linearly increasing thermal expansion coefficient with increasing temperature up to 1200 °C and the coefficients of thermal expansion (CTEs) are in the range of 1 × 10− 5–12.5 × 10− 6 K− 1, which are comparable to those of 7YSZ. BLT coatings with stoichiometric composition were produced by atmospheric plasma spraying. The coating contained segmentation cracks and had a porosity of around 13%. The microhardness for the BLT coating is 3.9–4.5 GPa. The thermo-physical properties of the sprayed coating were investigated. The thermal conductivity at 1200 °C is about 0.7 W/mK, exhibiting a very promising potential in improving the thermal insulation property of TBC. Thermal cycling result showed that the BLT TBC had a lifetime of more than 1100 cycles of about 200 h at 1100 °C. The failure of the coating occurred by cracking at the thermally grown oxide (TGO) layer due to severe oxidation of bond coat. Based on the above merits, BLT could be considered as a promising material for TBC applications.  相似文献   

17.
We fabricated high quality BiMnO3 thin films with double SrTiO3 buffer layers on Pt/Ti/SiO2/Si substrates, in which the SrTiO3 buffer layers were used for the reduction of leakage current in BiMnO3 thin films. We chose an SrTiO3 thickness of about 5 nm, which was obtained by the fitting of ellipsometer data. We confirmed a remarkable enhancement in leakage current. BiMnO3 thin films exhibited a ferromagnetic transition with Curie temperature of about 105 K. The BiMnO3 thin film also showed a good ferroelectric property with a remnant polarization of about 9 μC/cm2.  相似文献   

18.
Ba(Zn1/3Nb2/3)O3 nanoparticles have been synthesized by a polymerised complex method by using precursor materials of barium nitrate, zinc acetate, niobium oxide, hydrofluoric acid and citric acid. Thermal decomposition characteristics and crystallization behavior of the powders were investigated by the thermogravimetric and differential thermal analysis, X-ray diffractometer and Fourier transform infrared spectroscopy. Ba(Zn1/3Nb2/3)O3 phase started to form at low temperature of 400 °C and, single phase Ba(Zn1/3Nb2/3)O3 perovskite structure was obtained at 1000 °C. Microstructural investigation revealed that the major particle size of Ba(Zn1/3Nb2/3)O3 nanoparticles were in the range of 80–110 nm with spherical morphology and homogeneous size distribution. But the powders also contained some agglomeration.  相似文献   

19.
La1−xSrxFeO3 (x = 0–1) perovskite, Sr-substituted LaFeO3, was prepared by Self-propagating high-temperature synthesis (SHS) and its catalytic activity for soot combustion was experimentally examined in comparison with that of a conventional Pt/Al2O3 catalyst. The products were also characterized by XRD, FE-SEM, and BET specific surface area. The XRD analysis revealed that all the products had a perovskite phase as the major compound, together with intermediate phases with higher x values (x = 0.7–1). The BET specific surface area of the products increased with x. Moreover, the catalytic activity for soot combustion also increased with x, wherein the BET specific surface area appeared an appropriate index for explaining the observed activity. The sample with x = 0.8 exhibited the highest activity for soot combustion among all the SHS products. The soot combustion temperature of this product was as much as 100 °C lower than that of non-catalytic soot combustion. In other words, it had the same activity as that at only 20 °C higher, in comparison to conventional Pt/Al2O3 catalyst. More significantly, average apparent activation energy of sample with x = 0.8 calculated by Friedman method using TG/DTA was approximately 15 kJ/mol lower than that of Pt/Al2O3 catalyst. This result suggested that La1−xSrxFeO3 has the possibility to be an alternative catalyst to Pt/Al2O3 catalyst.  相似文献   

20.
Hybrid sol–gel coatings provide an approach as protective layers on metals. In this work, corrosion protection of aluminium and magnesium alloys by SiO2-methacrylate coatings doped with TiO2–CeO2 nanoparticles was studied. The films show an improvement of the barrier properties at initial immersion. The reactivity of both alloys produces a deterioration of the protection with longer immersion, although TiO2–CeO2 nanoparticles let to observe signals of self-healing effect. Aluminium oxide/sol–gel interface was found to be stable. In combination with excellent paint adhesion on sol–gel films, these coatings can be a promising alternative pre-treatment for high strength aluminium alloys prior to painting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号